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1. Introduction

The basic utility of mirror symmetry is its power in the computation of Gromov-Witten

invariants. In terms of classical, compact mirror symmetry, these invariants are computed

from the coefficients of a generating function, known as the prepotential. What one does

in practice is solve for the period integrals of the mirror manifold, and then identify the

prepotential and mirror map as certain linear combinations of ratios of these period inte-

grals.

In the context of local mirror symmetry, in which one considers mirror symmetry for

noncompact Calabi-Yau manifolds, such an approach has not appeared to date. In fact,

current technology does not provide us with a means of defining the prepotential in these
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cases. This problem emerges because the local mirror manifold does not have ‘enough’

period integrals to determine the prepotential. While we can often turn to localization

formulas to determine Gromov-Witten invariants, this is generally more cumbersome than

the corresponding B model calculation. The above problem becomes manifest in the case

of the mirror computation of KF2
, using the double log solution of the usual Picard-Fuchs

system. As is well known, the Hirzebruch surface F2 has one Calabi-Yau direction in the

two dimensional Kähler cone. Therefore, local Gromov-Witten invariants associated with

curves that have positive degree only in this direction cannot be computed from the double

log solution, as was suggested in [2]. In [1], we proposed the idea of an extended Picard-

Fuchs system for local mirror symmetry, obtained by modifying the usual Picard-Fuchs

system of local mirror symmetry. The extended Picard-Fuchs system has a larger solution

space than the usual one, and moreover it has a triple log solution. Therefore, we can

compute the full prepotential of a local Calabi-Yau threefold. In particular, in the case

of KF2
, the triple log solution includes the information of local Gromov-Witten invariants

that cannot be detected by the double log solution! However, a basic problem with the

constructions of [1] is that the instanton expansion of the prepotential was used to derive

the extended system. In the case of KS , where S is a compact toric surface, this instanton

data fixes the triple intersection numbers, which are crucial in the construction of the

extended Picard-Fuchs system. For X a local Calabi-Yau 3-fold with dimH4(X, Z) = 0,

we had to make direct use of the instanton part of the A-model prepotential to derive an

extended Picard-Fuchs system.

The aim of this paper is to overcome these weak points in the construction of the

extended Picard-Fuchs system. In the case of KS , we derive a natural definition of the

classical triple intersection numbers of KS , by generalizing the definition of local Gromov-

Witten invariants given in [2]. This definition matches the results in [1] and explains the

moduli parameter of the classical triple intersection numbers found in [1]. Therefore, we

can construct an extended Picard-Fuchs system of KS without using the instanton part of

the prepotential of KS .

On the other hand, we may also take advantage of our formula for intersection theory

in order to provide an alternate derivation of the prepotential of local mirror symmetry.

In the event that X = KS , the procedure goes as follows. First, we construct a compact

3-fold by taking the projective closure of X : X̄ = P(OS ⊕ KS). We then consider the

local Calabi-Yau 4-fold KX̄ and construct an extended Picard-Fuchs system of KX̄ by

generalizing the results for KS . With this extended Picard-Fuchs system, we can compute

the 4-point Yukawa couplings of KX̄ . Finally, we can see the instanton part of the three

point functions of X by taking the large fiber limit of the fourpoint functions. This provides

a simple algorithm by which we can extract the exact form of the prepotential for KS (up

to polynomial terms of degree 2).

A problem with this approach appears if the dimension of the compactification fiber

gets too large. In particular, we run into this difficulty for any noncompact threefold X

such that dim H2(X, Z) ≥ 2, dim H4(X, Z) = 0. For such examples, we provide a method

by which one may reduce the problem to a KS case. Then, in the appropriate limits, we

are again able to give a definition for the prepotential.
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The organization of this paper is as follows. In section 2, we first propose a conjecture

on a geometrical interpretation of the 3 point functions of local mirror symmetry for KS ,

which is a straightforward generalization of the definition given in [2], and use this to derive

a formula for classical triple intersection numbers for KS . Then we compute explicitly

these numbers for the examples used in [1] from the localization formula. In section 3,

we extend the results of the previous section to the local fourfold KX̄ and construct the

extended Picard Fuchs system of KX̄ in the case of X = KS . Next, we clarify the relation

between the large fiber limit of the 4 point functions of KX̄ and the 3 point functions

of X. We also justify the process of the computation of the B-model 4-point functions

by using the extended Picard-Fuchs system. Section 4 gives the toric construction of the

projective closure X̄ when X is a vector bundle. Section 5 contains applications of the

fourfold construction to KS and the total space of P
1 with normal bundle O(−1)⊕O(−1)

or O ⊕ O(−2). Section 6 details methods of dealing with more exotic cases. Finally, the

extended Picard-Fuchs system (in the sense of [1]) for the trivalent curve is given in the

appendix.

2. Fractional intersection theory on KS

We begin by discussing fractional intersection theory for noncompact Calabi-Yau three-

folds [3, 1]. The discussion here will be necessary for fixing the form of the extended

Picard-Fuchs system, and will eventually allow us to fix the overall scaling factor of the

prepotential exactly.

2.1 A conjecture on Yukawa couplings

In our previous paper [1], we computed the Yukawa couplings (3-point functions) of a local

Calabi-Yau 3-fold KS (S: toric 2-fold) by using the extended Picard-Fuchs system. In

this subsection, we first write down a conjecture on the geometrical interpretation of these

Yukawa couplings:

Conjecture 1. The Yukawa couplings computed in [1] are the three point functions

〈OJa(z1)OJb
(z2)OJc(z3)〉0 of the topological sigma model on KS without coupling to topo-

logical gravity:

〈OJa(z1)OJb
(z2)OJc(z3)〉0 =

∑

~d

q
~d〈OJa(z1)OJb

(z2)OJc(z3)〉0,~d
(2.1)

:=
∑

~d

q
~d

∫

[M0(S,~d)]vir.

ctop(R
1π∗ev

∗KS)

ctop(R0π∗ev∗KS)
ev∗1(Ja)ev

∗
2(Jb)ev

∗
3(Jc).

Here, we have to explain the notation used in (2.2). We denote the generators of H1,1(S, Z)

by Ja. M0(S, ~d) is the compactified moduli space of holomorphic maps of degree ~d ∈
H2(S, Z) from P

1 to S. The notation [M0(S, ~d)]vir. means that we always insert the top

Chern class of the obstruction bundle in the same way as in the usual theory of Gromov-

Witten invariants. We note that this moduli space does not correspond to the topological

sigma model coupled to topological gravity. Therefore, we don’t take the equivalence class
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of SL(2, C), the automorphism group of P
1, and we also don’t consider the degrees of

freedom from moving marked points. Instead, we introduce three fixed marked points

z1, z2, z3 ∈ P
1 and define the evaluation maps evi : M0(S, ~d) → S by ϕ(zi) ∈ S, (ϕ ∈

M 0(S, ~d)). We also define the map ev : P
1 × M0(S, ~d) → S by ev(z, ϕ) = ϕ(z) and the

map π : P
1 × M 0(S, ~d) → M0(S, ~d) as the projection map onto the second factor.

In the case of a local 3-fold KS , we have a birational map between M0(S, ~d) and

the usual moduli space of stable maps M0,3(S, ~d), because SL(2, C) is isomorphic to the

position of the three distinguished marked points in P
1. Therefore, this definition coincides

with the usual definition of 3-point local Gromov-Witten invariants of KS , at least in

the case when ~d 6= 0 [2]. As is well known, the extension of this conjecture to higher

dimensional local Calabi-Yau manifolds is slightly different from the usual theory of local

Gromov-Witten invariants.

In our previous paper [1], a crucial point of the construction of the extended Picard-

Fuchs system of KS is the determination of the classical part of the Yukawa couplings.

Therefore, we carefully look at the ~d = 0 part of the above conjecture. In this case,

ϕ ∈ M0(S, 0) is just the constant map from P
1 to S, and it is obvious that M0(S, 0) = S.

Hence evi turns out to be the identity map of S. The map ev becomes a projection map

of the second factor of P
1 × M0(S, 0), and R1π∗ev

∗KS and R0π∗ev
∗KS turn out to be 0

and KS respectively. With these considerations, the classical triple intersection number

〈Ca, Cb, Cc〉 := 〈OJa(z1)OJb
(z2)OJc(z3)〉0,0 (Ca ∈ H4(S, Z) is the Poincare dual of Ja) is

given by the formula:

Corollary 1.

〈Ca, Cb, Cc〉 =

∫

S

JaJbJc

c1(KS)
. (2.2)

At first glance, this formula seems to be ill-defined, because division by c1(KS) is not

defined in H∗(S, C). Yet KS is written in terms of a linear combination of Ja’s, and we

can therefore expect the following constraints between classical triple intersection numbers

by the formal reduction c1(KS)/c1(KS) = 1:

Corollary 2.

〈Ca, Cb, PD(c1(KS))〉 =

∫

S
JaJb, (2.3)

where we denote the Poincare dual of c1(KS) by PD(c1(KS)) . In the case of KP2 ,

H1,1(P2, Z) is generated by the hyperplane class H, and the above corollary gives us

〈H,H,H〉 =

∫

P2

H3

−3H
= −1

3
, (2.4)

which coincides with the result in [2]. In the next subsection, we try to compute the r. h.

s. of (2.2) with the aid of the localization formula, and we also show that the constraint

(2.3) holds in the results obtained in our previous paper [1].

As another application of the above conjecture, we compute the three point function

of KF2
that corresponds to the non-rigid curve in the fiber direction. This computation

has already been mentioned in [2], but it is important in our fourfold construction that
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will be introduced in the next section. Let us first introduce the toric construction of F2.

F2 is obtained from dividing C
4 \ (((0, 0) × C

2) ∪ (C2 × (0, 0))) by the two C
∗ actions,

(x1, x2, x3, x4) ∼ (x1, x2, µx3, µx4) ∼ (λx1, λx2, x3, λ
−2x4). (2.5)

The classical cohomology of F2 is generated by the two Kähler forms Ju and Jv that

correspond to the µ and λ actions respectively. These Kähler forms satisfy the following

relations:

J2
u = 2JuJv, J2

v = 0. (2.6)

Then we consider two holomorphic maps with degrees (du, dv) = (1, 0) and (du, dv) = (0, 1),

as follows:

ϕ1(s, t) = (a, b, c1s + c2t, d1s + d2t),

ϕ2(s, t) = (a1s + a2t, b1s + b2t, c, 0). (2.7)

Note that the fourth entry of ϕ2 should be 0 because of the λ−2 action. By considering the

two C
∗ actions, we can see that moduli space of ϕ1 and ϕ2 can be compactified into P

1×P
3

and P
3 respectively. Therefore, the image curve of ϕ1 is not rigid in F2, but the image

curve of ϕ2 is rigid in F2. Next, we extend this construction to KF2
. KF2

is constructed

by adding a fifth variable x5 and extending the two C
∗ actions as follows:

(x1, x2, x3, x4, x5) ∼ (x1, x2, µx3, µx4, µ
−2x5) ∼ (λx1, λx2, x3, λ

−2x4, x5). (2.8)

Then the two holomorphic maps in (2.7) can be extended to

ϕ̃1(s, t) = (a, b, c1s + c2t, d1s + d2t, 0),

ϕ̃2(s, t) = (a1s + a2t, b1s + b2t, c, 0, e). (2.9)

We note here that the fifth entry of ϕ̃1(s, t) should be 0 by the µ−2 action. Therefore, we

can conclude that the image curve of ϕ̃1(s, t) is rigid along the non-compact fiber direction,

as in the usual situation in local mirror symmetry. But ϕ̃2(s, t) has one additional moduli

parameter e, which corresponds to a non-compact fiber direction. This situation is excep-

tional, and so we compute the three point function 〈OJv(z1)OJv (z2)OJv(z3)〉(0,1) for the

degree (0, 1) map ϕ̃2(s, t) by the following. If we look back at our conjecture, the appear-

ance of the additional moduli parameter e results in the non-trivially of ctop(R
0π∗ev

∗(KF2
)),

and this turns out to be −2Ju in this case. On the other hand, R1π∗ev
∗(KF2

) is trivial, so

what remains to be computed is

〈OJv(z1)OJv (z2)OJv(z3)〉(0,1) =

∫

[M(F2,(0,1))]vir.

1

−2Ju
ev∗1(Jv)ev

∗
2(Jv)ev

∗
3(Jv). (2.10)

This formula seems exotic, but luckily, we have a nontrivial virtual fundamental class in

this case. Since the normal bundle N of the image curve in F2 is generated by x4, it is

isomorphic to OF2
(−2Jv + Ju). Therefore, ϕ∗

2N is identified with OP1(−2) ⊗OF2
(Ju) and

we have ctop(R
1π∗ev

∗(N)) = Ju. Hence, we have obtained the following equality:

〈OJv (z1)OJv (z2)OJv(z3)〉(0,1) =

∫

[M(F2,(0,1))]vir.

1

−2Ju
ev∗1(Jv)ev

∗
2(Jv)ev

∗
3(Jv)
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=

∫

M(F2,(0,1))

Ju

−2Ju
ev∗1(Jv)ev

∗
2(Jv)ev

∗
3(Jv)

= −1

2

∫

P3

H3

= −1

2
, (2.11)

where we used the results that follow from the previous compactification:

M(F2, (0, 1)) = P
3, evi(Jv) = H, (H is the hyperplane class of P

3). (2.12)

As was suggested in [2], this fractional Gromov-Witten invariant cannot be seen from the

usual recipe of local mirror symmetry, which relies on one double log solution. But we can

detect this invariant by the extended Picard-Fuchs system of KF2
constructed in [1], since

this system has a triple log solution. This fact is one of the non-trivial advantages of the

extended Picard-Fuchs system.

2.2 Review of the fixed point formula

In this part, we will review the application of the Atiyah-Bott fixed point formula to

torically described surfaces S, where the number of independent curve classes C ∈ H2(S, Z)

is allowed to be arbitrary. The Hirzebruch surface F2 will be used as an example throughout

this discussion.

So, let S be a toric complex twofold, defined by vertices {ν1, . . . , νn} ⊂ Z
m and a

choice of basis {l1, . . . , ln−2} ⊂ Z
n of relations for the νi. That is, if lj = (lj1, . . . , l

j
n),

then
∑n

i=1 lji νi = 0 for all j. We note, in particular, that smooth toric varieties are

simplicial. Recall (see e.g. [4]) that to each vi there is an associated divisor Di ∈ H2(S, Z),

and similarly, to each lj we may associated a curve class Cj ∈ H2(S, Z). Moreover, the

intersection matrix between these divisors and curves is determined by

Di · Cj = lji . (2.13)

For a more tangible view of S and its curves and divisors, we can use the homogeneous

coordinate ring representation [5]. This gives an isomorphism

S ∼= C
n − Z

(C∗)n−2
(2.14)

where Z is the Stanley-Reisner ideal, and the action of the jth factor of the quotient

appears as

C
∗ : (x1, . . . , xn) −→ (αlj

1x1, . . . , α
ljnxn). (2.15)

α is the generator of C
∗. If (x1, . . . , xn) are coordinates on C

n, we can then simply describe

the divisors of S by Di = S ∩ {xi = 0}.
In the case of F2, we have vertices

ν1 = (1, 0), ν2 = (0, 1), ν3 = (−1, 2), ν4 = (0,−1) (2.16)

– 6 –
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The a basis of relations for these is provided by

Iij =

(

l1

l2

)

=

(

1 1 0 0

−2 0 1 1

)

(2.17)

and, as mentioned above, Iij = Di · Cj. We also have Z = {x1x2 = 0} ∪ {x3x4 = 0}.
To apply the localization formula, it is convenient to first compute the equivariant

cohomology ring of S. To construct this, begin with the ordinary cohomology ring

H∗(S, C) =
C[K1, . . . ,Kn]

(

P,Z(Ki)
) . (2.18)

The Ki are the Poincare duals of the divisors Di, and P is the ideal of linear relations for

the Ki. Z(Ki) is the Stanley Reisner ideal, where x has been replaced by K. For the curve

classes Cj defined by the basis vectors of relations among the vertices νi, we introduce

Kähler classes Ji ∈ H1,1(S, C) such that

∫

Cj

Ji = δij . (2.19)

The cohomology classes Kj and Ji are related in a very simple way; namely

Ki =
∑

k

lki Jk. (2.20)

We are now in position to write down the equivariant cohomology ring of S with respect

to the group action T on S inherited from C
n; it is

H∗
T (S, C) =

C[J1, . . . , Jn−2, λ1, . . . , λn]

Z(
∑

k lki Jk − λi)
. (2.21)

Let {p1, . . . , pr} be the fixed points of the action T on S. Recall that in this situation,

if ij : pj ↪→ S is the inclusion map and Nj = Npj/S , then the fixed point formula reads

∫

ST

ν =

r
∑

j=1

i∗j (ν)

eT (Nj)
. (2.22)

Above, ν ∈ H∗
T (S) ⊗ C[λ1, . . . , λn], eT (Nj) is the equivariant Euler class of Nj , and if

ET → BT is the classifying bundle of T , then ST = S ×T ET.

To apply this formula, it is useful to have an algorithm for the computation of eT (Nj).

This can be readily done, as follows. First write Z(
∑

k lki Jk −λi) = {R1(J, λ) . . . Rα(J, λ)},
where we are using the shorthand J = (J1 . . . Jn−2), λ = (λ1 . . . λn). In our setting, each

factor Ri(J, λ) breaks down as a product of linear factors P i
k:

Ri(J, λ) =

ni
∏

j=1

P i
j (J, λ). (2.23)
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where
∏α

i=1 ni = r. Then solving the relations R1(J, λ) = · · · = Rα(J, λ) = 0 for J in

terms of λ, we find r solutions. Without loss of generality, we use the first solution for the

purpose of this explanation, which can be described by

P 1
1 (J, λ) = · · · = Pα

1 (J, λ) = 0. (2.24)

Let J(λ) denote the solution to this equation. Then the equivariant Euler class of the

normal bundle is given by the formula

eT (N1) =

α
∏

i=1

ni
∏

j=2

P i
j (J(λ), λ) (2.25)

We obtain similar formulas for each of the other r − 1 solutions.

We now apply this to F2. The intersection matrix Iij tells us that the ordinary coho-

mology ring of F2 can be written

H∗(F2, C) =
C[K1, . . . ,K4]

〈K3 − K4,K1 + K3 + K4 − K2,K1K2,K3K4〉
. (2.26)

Thus the equivariant cohomology ring is given as

H∗
T (F2, C) =

C[J1, J2, λ1, . . . , λ4]

〈(J1 − 2J2 − λ1)(J1 − λ2), (J2 − λ3)(J2 − λ4)〉
. (2.27)

One of the solutions of the relations of the Stanley Reisner ideal is J1 = 2λ4 + λ1, J2 = λ4.

Substituting this into the remaining nonzero terms, we find

eT (N) = (λ2 − 2λ4 − λ1)(λ4 − λ3) (2.28)

for the equivariant Euler class of the normal bundle at this fixed point. There are exactly

4 such fixed points using this construction, as expected.

As a test of these calculations, we can compute the intersection numbers between the

2-cycles on F2 via the fixed point theorem. Then we find e.g.

C1 · C2 =

∫

F2

J1 ∧ J2 =
λ2λ4

(λ4 − λ3)(λ2 − 2λ4 − λ1)
+

λ2λ3

(λ3 − λ4)(λ2 − 2λ3 − λ1)
+

(2λ4 + λ1)λ4

(λ4 − λ3)(λ1 + 2λ4 − λ2)
+

(2λ3 + λ1)λ3

(λ3 − λ4)(λ1 + 2λ3 − λ2)
= 1,

the correct intersection number.

We then give the general definition, based on our conjecture in the previous section:

Definition 1. Let S be a toric surface with torus action T , and let {p1, . . . , pr} be the

isolated fixed points of T on S. Let Ca, Cb, Cc ∈ H2(S, Z), and denote the canonical bundle

of S by KS. Then the triple intersection numbers of S are defined by the formula

〈Ca, Cb, Cc〉 =

r
∑

j=1

i∗j (Ja)i
∗
j (Jb)i

∗
j (Jc)

eT (Nj)
i∗j(e

−1
T (KS)). (2.29)

Here ij : pj ↪→ S is the inclusion, Nj is the normal bundle of pj in S and eT (E) denotes

the equivariant Euler class of the bundle E. Also the Ji satisfy
∫

Ci
Jj = δij .
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This definition is a precise version of the heuristic formula for triple intersection numbers

derived earlier:

〈Ca, Cb, Cc〉 =

∫

S

JaJbJc

c1(KS)
. (2.30)

While Definition 1 is mathematically rigorous, in practice it can be cumbersome to write

out the sometimes quite complicated formulas of the torus weights. As such, we can make

use of the formula (2.30) to make a heuristic calculation of the intersection numbers. This

is in fact the strategy we will employ when computing intersection numbers for the del

Pezzo surface below.

2.3 Examples

Example 1. Let’s first use the definition on a rather simple case, namely F0 = P
1 × P

1.

From section 2.1, we have that the equivariant cohomology ring of F0 with respect to the

standard T action is

H∗
T (F0, C) =

C[J1, J2, λ1, . . . , λ4]

〈(J1 − λ1)(J1 − λ2), (J2 − λ3)(J2 − λ4)〉
. (2.31)

Note that there are four fixed points p1, . . . , p4 corresponding to the four corners of the

square P
1 × P

1. Then we can use the above expression for the equivariant cohomology to

find the inverse images of the two cohomology classes J1, J2, as well as of the canonical

bundle. We write out one of the expressions we get by using the above definition:

〈C1, C1, C2〉 =
λ2

1λ3

(λ3 − λ4)(λ1 − λ2)(−2λ1 − 2λ3)
+

λ2
1λ4

(λ4 − λ3)(λ1 − λ2)(−2λ1 − 2λ4)
(2.32)

+
λ2

2λ3

(λ3 − λ4)(−λ1 + λ2)(−2λ2 − 2λ3)
+

λ2
2λ4

(λ4 − λ3)(−λ1 + λ2)(−2λ2 − 2λ4)
.

There are, naturally, three others for the other triple intersection numbers. Then all we

need to do is set λ1 = λ3 and we immediately have that

〈C1, C1, C1〉 =
x

4
, 〈C1, C1, C2〉 = −x

4
, 〈C1, C2, C2〉 =

x − 2

4
, 〈C2, C2, C2〉 =

2 − x

4
(2.33)

where x is an expression involving the torus weights, which we interpret here as a moduli

parameter on the intersection numbers. These are exactly the four triple intersection

numbers from [3, 1]. 1

Example 2. Next, consider F2. Here we will find that we must make a nontrivial choice

of torus weights in order to reproduce the expected triple intersection numbers [1]. The

origin of this complication lies in the fact that the canonical bundle over F2 does not

involve a cohomology class from the base curve. In [1], this ambiguity turned up as a

moduli parameter for the intersection numbers.

1The extended Picard-Fuchs system of KF0
indeed has one moduli parameter which agrees with the

above results, but it was not mentioned in [1].
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As above, we find three of the four triple intersection numbers on F2. Note that here,

the values computed are independent of the choice of torus weights, in contrast to the F0

case.

〈C1, C1, C1〉 = −1, 〈C1, C1, C2〉 = −1

2
, 〈C1, C2, C2〉 = 0. (2.34)

Again, these agree with [1]. However, for the remaining intersection number we obtain

〈C2, C2, C2〉 =
1

2

λ1λ
2
3 + λ1λ3λ4 + λ1λ

2
4 + 2λ3λ

2
4 + 2λ2

3λ4

(2λ3 + λ1)(2λ4 + λ1)λ2
(2.35)

At first, this result seems to mean that there exists one moduli parameter corresponding

to 〈C2, C2, C2〉. However, in [1], we have found that this number should be set to zero from

considering the behavior of the triple log solution of the extended Picard-Fuchs system [1].

We think that this phenomena is deeply connected with the exceptional behavior of the

curve in KF2
that is nonrigid in the noncompact direction.

Example 3. We can also carry out the calculation for F1. The equivariant cohomology

ring is in this case

H∗
T (F1, C) =

C[J1, J2, λ1, . . . , λ4]

〈(J1 − κ1)(J1 − J2 − κ2), (J2 − κ3)(J2 − κ4)〉
(2.36)

From [1], it was found that there is in fact a moduli parameter in the triple intersection

numbers for this case which leaves the instanton expansion invariant. Using the localiza-

tion calculation, this problem shows up as an indeterminacy of the intersection numbers.

However, what we find is that by fixing one of the four intersection numbers, the other

three are determined automatically. We fix 〈C1, C1, C1〉 = x by choosing

λ3 =
−λ1(3λ1 + 2λ4 + 12xλ1 + 6xλ4)

(1 + 3x)(2λ1 + λ4)
, x 6= −1

3
. (2.37)

Then this choice gives the remaining three intersection numbers

〈C1, C1, C2〉 = −1 − 2x, 〈C1, C2, C2〉 = 1 + 4x, 〈C2, C2, C2〉 = −2 − 8x. (2.38)

These are again as expected, including the moduli parameter [1].

Example 4. Finally, we compute triple intersection numbers for the del Pezzo surface dP2.

In this case, the fixed-point computation is rather complicated, and we therefore present an

alternative (simplified) way of determining the classical triple intersection numbers. First,

we restate the notation of the previous paper [1] for the classical cohomology ring of dP2.

It is generated by three Kähler forms J1, J2, J3 and obeys the 5 relations:

p1 = (J1 − J2)(J1 − J3), p2 = J2(J2 + J3 − J1), p3 = J3(J2 + J3 − J1),

p4 = J2(J1 − J3), p5 = J3(J1 − J2). (2.39)
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As in the previous examples, the Ji are chosen such that if C1, C2, C3 is a basis of H2(dP2, Z),

then
∫

Ci

Jj = δij . (2.40)

With this notation, e(N) := c1(KdP2
) is given by −(J1+J2+J3), and the triple intersection

numbers are given by the formula:

〈Ca, Cb, Cc〉 =

∫

dP2

JaJbJc

c1(KdP2
)

= −
∫

dP2

JaJbJc

J1 + J2 + J3
. (2.41)

Of course, the above expression is formal, but we can read off from this equation the

relations between triple intersection numbers:

〈C1, Cb, Cc〉 + 〈C2, Cb, Cc〉 + 〈C3, Cb, Cc〉 = −
∫

dP2

JbJc. (2.42)

Notice that the r.h.s is just the well-defined classical intersection number of dP2. Since

the classical triple intersection numbers are symmetric in a, b, c, we have 10 independent

numbers. But (2.42) imposes 6 independent relations between these numbers. As a result,

we obtain 4 moduli parameters in the classical triple intersection numbers, which agree

with the 4 moduli parameters found in the previous paper [1].

〈C1, C1, C1〉 = −1 + 3x + 3z + y + w, 〈C2, C2, C2〉 = −y, 〈C3, C3, C3〉 = −w,

〈C1, C1, C2〉 = −z − 2x − y, 〈C1, C1, C3〉 = −x − 2z − w,

〈C1, C2, C2〉 = x + y, 〈C1, C3, C3〉 = z + w,

〈C2, C2, C3〉 = −x, 〈C2, C3, C3〉 = −z, 〈C1, C2, C3〉 = x + z − 1. (2.43)

If we set z = x, w = y, these results reduce to the triple intersection numbers used in [1].

Remark 1. In the case of KF0
,KF1

and KdP2
, the extended Picard-Fuchs system found

from the instanton part of the prepotential has the same number of moduli parameters which

cannot be fixed by the constraints (2.3), but the extended Picard-Fuchs system of KF2
has

no moduli. As we have mentioned, this fact seems to be related to the existence of a (0, 1)

curve in KF2
which is not rigid along the fiber direction.

3. The computational strategy via local fourfold

In this section, we give a schematic presentation of the procedure we will be using to

determine the prepotential. Let X be a noncompact Calabi-Yau threefold, and let F
denote the prepotential for X, which we want to define by using mirror symmetry. For all

cases considered in this paper, X is either KS , the canonical bundle over a complex surface

S, or dim H4(X, Z) = 0.

First, let us suppose that X = KS . Then we compute F in the following steps:

1) Take the canonical bundle over the projective closure of KS , X̂ = O(K) → P(OS ⊕
KS).
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2) Let Ŷ be the mirror of X̂ , and compute the fourpoint functions of Ŷ using the

extended Picard-Fuchs system.

3) Using the mirror map, convert the fourpoint functions of Ŷ into fourpoint functions

of X̂ .

4) Recover F from the fourpoint functions of X̂ in the large fiber limit.

At this point, we include a brief discussion as to why we expect to be able to derive

F from the above steps. After all, the resulting manifolds Ŷ and X̂ are still noncompact,

and we may therefore find ourselves in the same situation as in the original noncompact

KS case. The main point, however, is that while Ŷ is a noncompact fourfold, it contains

the compact threefold P(OS ⊕ KS) as a submanifold. Then, as in the considerations of

[2], they found that they were able to derive Picard-Fuchs equations for spaces like KS ,

but that the resulting differential systems corresponded to the underlying compact twofold

S. Similarly, with our procedure we expect to be able to derive accurately all information

corresponding to the underlying compact threefold P(OS ⊕ KS) from Ŷ .

We now give a more detailed explanation of these steps. Let {J1, . . . , Jm} be a basis

of H1,1(X, C). Take the projective closure X̄ = P(OS ⊕ KS) of X, and let JF be a Kähler

class of X̄ such that {J1, . . . , Jm, JF } is a basis of H1,1(X̄, C). We consider the canonical

bundle over X̄: X̂ = KX̄ . Since X̂ is a Calabi-Yau fourfold, the idea is then to compute F
as a limit of the fourpoint functions Cijkl of X̂ . At this stage, we clarify the geometrical

meaning of the fourpoint functions Cijkl of the local 4-fold X̂ = KX̄ . This can be done by

a direct generalization of our conjecture given in the previous section.

Conjecture 2. The fourpoint function Cijkl is the fourpoint function 〈OJi
(z1)OJj

(z2)×
OJk

(z3)OJl
(z4)〉0 of the topological sigma model on KX̄ without coupling to topological

gravity:

Cijkl =
∑

~d

q(~d,dF )〈OJi
(z1)OJj

(z2)OJk
(z3)OJl

(z4)〉0,(~d,dF )

:=
∑

~d

q(~d,dF )

∫

[M0(X̄,(~d,dF ))]vir.

ctop(R
1π∗ev

∗KX̄)

ctop(R0π∗ev∗KX̄)
ev∗1(Ji)ev

∗
2(Jj)ev

∗
3(Jk)ev

∗
4(Jl), (3.1)

where the notation is the same as that in Conjecture 1.

We compute the Cijkl by using mirror symmetry. Let Ŷ be the Hori-Vafa mirror to X̂ ,

and take {z1, . . . , zm, zF } to be complex structure coordinates for Ŷ , where zF is mirror

to the complexified Kähler coordinate tF satisfying <(tF ) = JF . We first determine the

fourpoint functions Y ijkl of Ŷ . Let {D1, . . . ,Dn,DF } be the (local) Picard-Fuchs system

of differential operators for period integrals of Ŷ . The last operator DF is distinguished,

as we take it to correspond to the complex structure variable zF .

Now, in computing fourpoint functions of Ŷ , we note that the system {D1, . . . ,Dn,DF }
is not sufficient. The reason for this is that these operators really correspond to the mirror
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of the compact threefold X̄, and therefore we need more relations to compute the Y ijkl.

Our solution is to use an extended Picard-Fuchs system, as considered in [1].

In order to fix a choice of extended Picard-Fuchs system, we reason as follows. From the

above conjecture, classical quadruple intersection numbers on X̂ are given by the formula:

〈Ca, Cb, Cc, Cd〉 =

∫

X̄

JaJbJcJd

c1(KX̄)
. (3.2)

where Ca ∈ H2(X̄, Z) and c1 is the first Chern class. Since c1(KX̄) = −2JF , we can easily

see,

〈Ca, Cb, Cc, CF 〉 = −1

2

∫

X̄
JaJbJc, (3.3)

with no ambiguity. However, if all of the Ja, Jb, Jc, Jd are induced from H1,1(S, Z),
∫

X̄
JaJbJcJd

−2JF
cannot be computed, and we therefore have free moduli parameters. In this

paper, we set all of these free moduli parameters to 0, i.e., we set

〈Ca, Cb, Cc, Cd〉 =

∫

X̄

JaJbJcJd

−2JF
= 0, (3.4)

if all of Ja, Jb, Jc, Jd are induced from H1,1(S, Z). This choice is geometrically natural since

JaJbJc = 0 in H∗(X̄.C) if all of Ja, Jb, Jc are induced from H1,1(S, Z); furthermore, it is

compatible with our choice of moduli in the F2 case.

The formulas (3.3) and (3.4) completely fix the fractional intersection theory of X̂ . Now

consider the Picard-Fuchs operators Di to be formal polynomials in the noncommutative

variables zi, θi, where θi = zi∂/∂zi, and define limiting relations by the formula Ri =

limz→0 Di. Then it is easy to show that the intersection theory defined by eqn.(3.3) and

eqn. (3.4) coincides with that of the commutative ring

H∗
ext(X̂, C) =

C[θ1, . . . , θm, θF ]

〈R1, . . . , Rn, θF RF 〉
. (3.5)

Hence, we should choose {D1, . . . ,Dn, θFDF } as our extended Picard-Fuchs system on Ŷ .

With this extended system in hand, we can solve for the four point functions, but

we need to make one more assumption. We assume the existence of n point functions,

n = 1 . . . 5, which are symmetric tensors satisfying

(i) Griffiths transversality: the n point functions vanish for n ≤ 3;

(ii) integrability: 2Y ijklm = θiYjklm + θjYiklm + θkYijlm + θlYijkm + θmYijkl,

(iii) relations among the n point functions are determined by the extended Picard-Fuchs

system.

We give here a brief justification for the existence of these. This is not a proof,

but is merely meant to indicate why one might expect to find n point functions with

the above properties. The key observation is that the extended Picard-Fuchs system

{D1, . . . ,Dn, θFDF } is actually the (ordinary) Picard-Fuchs system of the toric variety

– 13 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
1

X̂1 = O(−1
2K) ⊕ O(K) → P(OS ⊕ OS ⊕ KS), where we take a section of the positive

bundle O(−1
2K) (as was done in [6]). To see this, consider the noncompact Calabi-Yau

sixfold X̂2 = O(1
2K) ⊕O(K) → P(OS ⊕OS ⊕ KS), and let Ŷ2 be the mirror of X̂2, in the

sense of [7]. Then we have Ŷ2 = {(y1, . . . , y5) ∈ (C∗)5 : f(z1 . . . , zm, zF , yi) = 0} for some

f , and this allows us to define a meromorphic (4, 0) form on Ŷ2 as

Ω̂2 = Resf=0

(

5
∏

i=1

dyi

yi
e−f

)

. (3.6)

We recall briefly the original construction of Hori-Vafa [7]. Our computation of Ŷ2 may

be confusing, since in the process of taking the mirror manifold, the dimension has been

reduced by 2. However, this was in fact a peculiarity of their original construction. For

example, the mirror of O(−1) ⊕O(−1) → P
1 was described in the earlier works of mirror

symmetry as the hypersurface f1 = 1 + y1 + y2 + zy1y2 = 0, which is complex dimension

1. Only in slightly more recent literature do we find this equation modified to f2 =

uv + 1 + y1 + y2 + zy1y2 = 0, and this is done mainly with the motivation of keeping

the dimensions consistent on both sides of mirror symmetry. However, the period integrals

corresponding to f1 = 0 and f2 = 0 are the same, so we are free to consider Ŷ2 as a complex

fourfold.

Then, again using [7], we can produce a (4, 0) form on Ŷ1, the mirror to X̂1, by the

formula Ω̂1 = θF Ω̂2. The derivative converts noncompact period integrals into compact

ones. Recall that the result of Hori-Vafa [7] the equation

Πcompact =
∂

∂t
Πnon−compact. (3.7)

For example, this formula is well known in terms of the relationship between the period

integrals of O(−5) → P
4 and the period integrals of the quintic, which is a zero section of

the bundle O(5) → P
4. It is then straightforward to check that the period integrals given

by Ω̂1 are annihilated by the extended Picard-Fuchs system {D1 . . .Dn, θFDF}. Thus, we

have found a meromorphic form for Ŷ1, which is related to the n point functions as

Y i1...in =

∫

Ŷ1

Ω̂1 ∧ ∂i1 . . . ∂inΩ̂1. (3.8)

We then move forward under the assumption of the existence of n point functions. We

are now able to solve for the four point functions Yijkl of Ŷ completely by imposing the

condition that constant part of Yijkl should coincide with 〈Ci, Cj , Ck, Cl〉. Up to this point,

we have completed steps 1) and 2) of the outline. Next, we transform the functions Yijkl

to the A model via the inverse mirror map. Recall that the mirror map is given by the

basis {t1, ..., tm, tF } of logarithmic solutions of the Picard-Fuchs system; with this, and the

knowledge that the Yijkl are rank 4 tensors, we can compute the Cijkl, which are fourpoint

functions for X̂. The only thing remaining is to compute F in the threefold limit, and from

[8], this is done via the large fiber limit limtF→−∞ CijkF . We now clarify the relationship

between the three point functions of KX and limtF →−∞ CijkF . Taking the large fiber limit
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corresponds to picking up the dF = 0 part of the fourpoint function CijkF . Therefore, we

are led to consider

∑

~d

q(~d,0)

∫

[M0(X̄,(~d,0))]vir.

ctop(R
1π∗ev

∗KX̄)

ctop(R0π∗ev∗KX̄)
ev∗1(Ji)ev

∗
2(Jj)ev

∗
3(Jk)ev∗4(JF ). (3.9)

We note that ϕ ∈ M0(X̄, (~d, 0)) is nothing but the constant map along the fiber direction.

Therefore, we can regard ev∗4(JF ) as JF . We can also see that KX̄ is trivial along the X

direction, and we have

ctop(R
1π∗ev

∗KX̄) = 1, ctop(R
0π∗ev

∗KX̄) = c1(KX̄) = −2JF . (3.10)

Hence we obtain the following equality:

∑

~d

q(~d,0)

∫

[M0(X̄,(~d,0))]vir.

ctop(R
1π∗ev

∗KX̄)

ctop(R0π∗ev∗KX̄)
ev∗1(Ji)ev

∗
2(Jj)ev

∗
3(Jk)ev

∗
4(JF )

=
∑

~d

q(~d,0)

∫

[M0(X̄,(~d,0))]vir.

1

−2JF
ev∗1(Ji)ev

∗
2(Jj)ev

∗
3(Jk)JF

= −1

2

∑

~d

q(~d,0)

∫

[M0(X̄,(~d,0))]vir.

ev∗1(Ji)ev
∗
2(Jj)ev

∗
3(Jk). (3.11)

by formal reduction. Notice that if we assume that Ji, Jj , Jk are all induced from

H1,1(X, Z), the constant term of (3.11) vanishes. Therefore, constant term of the last line of

(3.11) vanishes. At this stage, we assume that image curve C := ϕ(P1) is rigid along the

fiber direction of X̄ = P(OS ⊕KS). Since C is contained in S, the normal bundle NC\X̄ is

given as follows:

NC\X̄ ' NC\S ⊕ KS ⊗OP(1). (3.12)

Under the above assumption, we have to insert ctop(R
1π∗ev

∗(KS ⊗ OP(1))) in reducing

[M 0(X̄, (~d, 0))]vir. into [M 0(S, ~d)]vir. since ctop(R
0π∗ev

∗(KS ⊗OP(1))) = 1. Moreover, since

external operator insertions come only from the cohomology class of S, we can neglect the

⊗OP(1) part from the topological selection rule. Therefore, we can rewrite the last line of

(3.11) as follows:

−1

2

∑

~d6=0

q(~d,0)

∫

[M0(X̄,(~d,0))]vir.

ev∗1(Ji)ev
∗
2(Jj)ev

∗
3(Jk)

= −1

2

∑

~d6=0

q(~d,0)

∫

[M0(S,~d)]vir.

ctop(R
1π∗ev

∗(KS))ev∗1(Ji)ev
∗
2(Jj)ev

∗
3(Jk). (3.13)

Since ctop(R
0π∗ev

∗(KS)) = 1, we can see that the last line of (3.13) coincides with the

formula (2.2) up to the factor −1
2 (neglecting constant terms). Therefore, we have obtained

the following equation under the assumption that all the image curves are rigid along the

fiber direction of X̄ = P(OS ⊕ KS):

lim
tF→−∞

CijkF =
−1

2
∂i∂j∂kFinst.. (3.14)
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Then equation (3.14) gives a defining equation for the prepotential F , up to polynomial

terms! We emphasize that while the usual local mirror symmetry Picard-Fuchs system

is only able to identify a single linear combination of prepotential derivatives, the above

formula completely fixes F up to the polynomial ambiguity. This is particularly handy

when the number of Kähler parameters of X = KS becomes large.

Of course, if S = F2, the above assumption breaks down for the (0, 1) curve mentioned

in the previous section. We discuss here this situation in detail. The toric construction of

P(O ⊕OKF2
) is obtained by adding a sixth variable x6 to the toric construction of KF2

in

the previous section.

(x1, x2, x3, x4, x5, x6) ∼ (x1, x2, µx3, µx4, µ
−2x5, x6) ∼ (λx1, λx2, x3, λ

−2x4, x5, x6)

∼ (x1, x2, x3, x4, νx5, νx6). (3.15)

Let Ju, Jv , Jw be the Kähler forms associated with the actions µ, λ, ν respectively. These

forms are generators of the classical cohomology ring of P(O ⊕ OKF2
). Relations of the

classical cohomology ring are given by,

J2
u = 2JuJv, J2

v = 0, J2
w = 2JwJu. (3.16)

This space is a P
1 fibration of F2, but it can also be regarded as an F2 fibration of P

1. We

denote the F2 fiber whose cohomology ring is generated by Ju and Jw by F f
2 . We have

relations:

J2
u = 0, J2

w = 2JwJu. (3.17)

Then degree ((0, 1), 0) map of P(O ⊕OKF2
) is given as follows:

ϕ(s, t) := (a1s + a2t, b1s + b2t, c, 0, e, f). (3.18)

Therefore, we can see that moduli space of ϕ is compactified into P
3 × P

1 by considering

three C∗ action. The second P
1 is Poincare dual of ku in F f

2 . With this setting, we compute

〈OJv (z1)OJv (zz)OJv(z3)OJF
(z4)〉((0,1),0). In the same way as the first part of the previous

computation, we can derive,

〈OJv (z1)OJv(zz)OJv(z3)OJF
(z4)〉((0,1),0) =

= −1

2

∫

[M0(P(OKF2
⊕O),((0,1),0))]vir.

ev∗1(Jv)ev
∗
2(Jv)ev

∗
3(Jv). (3.19)

The obstructed normal bundle of the image curve is generated by x4 and it is isomorphic

to OF2
(−2Jv +Ju). This generates the same virtual fundamental class Ju as the discussion

in the previous section. By using the above compactification of the moduli space, we can

proceed as follows:

〈OJv (z1)OJv (zz)OJv(z3)OJF
(z4)〉((0,1),0)

= −1

2

∫

M0(P(OKF2
⊕O),((0,1),0))

Juev∗1(Jv)ev
∗
2(Jv)ev

∗
3(Jv)
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= −1

2

∫

P3

H3

∫

P1

Ju,

= −1

2

∫

P1

Ju, (3.20)

where H is the hyperplane class of P
3. At this stage, we have to remember the fact that

this P
1 is identified with PD(Ju) in F f

2 . Hence we have,

〈OJv (z1)OJv(zz)OJv(z3)OJF
(z4)〉((0,1),0) = −1

2

∫

P1

Ju = −1

2

∫

F f
2

J2
u = 0. (3.21)

From this result, we conclude that this curve cannot be detected from the local fourfold

computation.

Next, suppose that dimH4(X, Z) = 0. First we discuss dim H2(X, Z) = 1 cases. In this

paper, we treat X̄ = P(O⊕O(−1)⊕O(−1)), P(O⊕O⊕O(−2)) which are compactifications

of X = O(−1) ⊕ O(−1) → P
1,O ⊕ O(−2) → P

1. Here, we denote by H the hyperplane

class of the base P
1. We also denote c1(OP(1)), which is a generator of the cohomology

class of fiber direction, by JF . Since c1(KX̄) = −3JF , we can compute the large fiber limit

of CHHHF in the same way as the first half of the computation of the X = KS case:

−1

3

∑

d>0

q(d,0)

∫

[M0(X̄,(d,0))]vir.

ev∗1(H)ev∗2(H)ev∗3(H) (3.22)

The remaining computations depend on the structure of the fibers; we discuss the X̄ =

P(O ⊕ O(−1) ⊕ O(−1)) case first. In this case, the image curve is rigid in the fiber

direction, and we only have to insert ctop(π∗ev
∗(O(−1)⊕O(−1))) to reduce M0(X̄, (d, 0))

into M0(P
1, d). Therefore, we obtain the following formula:

lim
tF →∞

CHHHF = −1

3

∑

d>0

q(d,0)

∫

[M0(X̄,(d,0))]vir.

ev∗1(H)ev∗2(H)ev∗3(H)

= −1

3

∑

d>0

qd

∫

M0(P1,d)
ctop(π∗ev

∗(O(−1) ⊕O(−1)))ev∗1(H)ev∗2(H)ev∗3(H)

= −1

3
· q

1 − q
, (3.23)

as is well known from the result of Aspinwall and Morrison.

Next, we discuss the X̄ = P(O⊕O⊕O(−2)) case. In this case, the image curve is not

rigid in the fiber direction, and M 0(X̄, (d, 0)) turns out to be P
1 × M0(P

1, d), where the

left P
1 is contained in the fiber P

2 of X̄. Therefore, we have to insert ctop(π∗ev
∗(O(−2) ⊗

OP(1))) =
∑2d−1

j=0 cj(π∗ev
∗(O(−2)))J2d−1−j

F in order to reduce M0(X̄, (d, 0)) into P
1 ×

M 0(P
1, d). With these considerations, we obtain the following result:

lim
tF→∞

CHHHF = −1

3

∑

d>0

q(d,0)

∫

[M0(X̄,(d,0))]vir.

ev∗1(H)ev∗2(H)ev∗3(H)

= −1

3

∑

d>0

qd

∫

P1×M0(P1,d)
c2d−2(π∗ev

∗(O(−2))) · JF · ev∗1(H)ev∗2(H)ev∗3(H)
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X̃2X2

Figure 1: Toric diagram of the partial compactification on O ⊕O(−2) −→ P1.

= −1

3

∑

d>0

qd

∫

M0(P1,d)
c2d−2(π∗ev

∗(O(−2)))ev∗1(H)ev∗2(H)ev∗3(H)

= −1

3
· q

1 − q
, (3.24)

which follows from the localization computation.

We then turn to the dimH2(X, Z) > 1 case. Here, we briefly discuss the schematic

procedure needed for the mirror computation. In this case, we must add the following steps

to those used for KS :

0) Compactify the moduli space of all curve classes C such that NC/X
∼= O⊕O(−2),

1
2) Flop the resulting space to a canonical bundle model,

31
3 ) Reverse the flop transition of step 1

2 ,

32
3 ) Decompactify the compactified moduli spaces of step 0.

Here we are assuming that the ‘compactified’ model we get after step 0 admits a flop to

a canonical bundle type space. This certainly holds true in all the examples we consider, and

probably has a reasonably broad range of validity. Then the only step in the above which

is not self-explanatory is number 0, since there are clearly a variety of compactifications

available, and the result varies demonstrably with the choice. Our approach is to use a

compactification such that the outcome is consistent with topological vertex calculations

[9]. This compactification was first considered in [10], and the basic example of it is depicted

in figure 1.

We mention here one extra subtlety which comes along with the use of this compactifi-

cation scheme in computing the prepotential. We are using this compactification because,

as mentioned, we cannot see the presence of −2 curves from usual mirror symmetry cal-

culations. However, using this compactification, we actually find the result that the −2

curves are overcounted by a factor of 2. The reason for this is as follows. For any toric
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graph containing figure 1 as a subgraph, the instanton number of the relevant curve comes

out to be −2. This is because figure 1 is the graph of KF0
, and the Gromov-Witten invari-

ant of each curve of KF0
is −2. Therefore, at the last step we should divide the resulting

Gromov-Witten invariant for the compactified curves by 2.

Then, by working through steps 0-4 for the dimH4(X, Z) = 0 case, we are able to

calculate the correct prepotential in a number of examples. In addition, we carry out the

computation for one example whose prepotential has not been worked out elsewhere, and

find a result which might have been guessed from the findings of [9].

4. Local Calabi-Yau fourfolds

We now turn our attention to the mirror symmetry construction of the prepotential for

noncompact Calabi-Yau threefolds.

4.1 Fourfold compactifications of local threefolds

We begin this section by offering some motivation on the utility of local Calabi-Yau four-

folds. We will demonstrate that local fourfolds are one of the more natural objects one

might consider in cases where ordinary local mirror symmetry for threefolds breaks down.

To this end, consider the space X = O⊕O(−2) −→ P
1. This can be realized as a symplectic

quotient

X = {(z1, . . . , z4) ∈ C
4 − Z : −2|z1|2 + |z2|2 + |z3|2 = r}/S1. (4.1)

Here Z = {z2 = z3 = 0} is the exceptional locus, r ∈ R
+ and

S1 : (z1, . . . , z4) −→ (e−2iθz1, e
iθz2, e

iθz3, z4), θ ∈ S1. (4.2)

Note that the vector (−2 1 1 0) completely specifies the geometry of X.

The usual constructions of local mirror symmetry [11] fail for this case, because the

Picard-Fuchs operator is only of order 2, and its solutions are spanned by 1, t where t is

the mirror map. This constitutes a failure of mirror symmetry exactly because there is one

holomorphic curve in X, and this curve is not counted, as we would like. Recently, one rem-

edy for this was offered in [1], where an extended Picard-Fuchs operator was constructed.

Here, we will take a different approach.

One of the reasons for the problem of the uncounted curve is that P
1 ↪→ X has a non-

compact deformation space C. Hence, we should be able to recover the curve information

by compactifying this deformation space; the simplest choice for such an operation is the

projective closure X̄ , which is the compact toric manifold given by the vectors
(

−2 1 1 0 0

1 0 0 1 1

)

. (4.3)

We have X̄ ∼= P(O ⊕ O ⊕ O(−2)) −→ P1. Notice that this is a P2 fibration over X.

Unfortunately, this new space is not Calabi-Yau, but there is a natural local CY fourfold

associated to it:

KX̄ = {−2|z1|2 + |z2|2 + |z3|2 = r,−3|z0|2 + |z1|2 + |z4|2 + |z5|2 = rF }/(S1)2. (4.4)
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This is, of course, just the local CY given by

(

0 −2 1 1 0 0

−3 1 0 0 1 1

)

(4.5)

and is the canonical bundle over X̄ . Now, recall [11][1] that local mirror symmetry on a

space X is incomplete (i.e., the prepotential cannot be reconstructed from solutions of the

PF operators) exactly when dimH2(X) 6= dim H4(X). In the case of O ⊕O(−2) −→ P
1,

there are no four cycles at all, which translates into a lack of predictive power of the

instanton expansion via mirror symmetry. The new space KX̄ has two four cycles, and

moreover the deformation space of the base curve has been compactified, which indicates

that this geometry should have the instanton numbers that were lacking on X.

On any space X = KS , the canonical bundle over a surface S, we can give a general

description of this procedure via charge vectors. First, write the charge vectors of X







−l10 l11 . . . l1n
...

...

−ln−2
0 ln−2

1 . . . ln−2
n






(4.6)

where we take the convention that li0 ≥ 0 ∀i. This means that, if [Ci] is the curve class

associated to the vector li, then the canonical bundle of S is
∑

i l
i
0[Ci]. Then we define the

associated noncompact Calabi-Yau fourfold to be













0 −l10 l11 . . . l1n 0
...

...
...

...

0 −ln−2
0 ln−2

1 . . . ln−2
n 0

−2 1 0 . . . 0 1.













(4.7)

which is nothing but the canonical bundle over P(OS ⊕ KS). Note that, while we can

associate a noncompact fourfold to any geometry of type KS , we only expect that the

Picard-Fuchs system on the fourfold has new information about curves in S if dimH2(S) 6=
dim H4(S).

We now move on to discuss the methods of analyzing local fourfold geometries.

4.2 Periods of local fourfolds

Here, we will briefly describe relevant geometric quantities of fourfolds in terms of Picard-

Fuchs solutions. See [8] for a similar discussion for compact fourfolds.

We assume that we begin with a noncompact Calabi-Yau threefold X0, and let B3

be the projective closure of X0. Then the fourfolds we will use are all of the type X =

KB3 , where KB3 is the canonical bundle over B3. This is specified by a set of vertices

{ν1, . . . , νn} ⊂ Z
4. Choose a basis of relation vectors {l1, . . . , lm} satisfying

∑

k lki vk = 0 ∀i,

and let C1, . . . , Cm be the corresponding basis of H2(X, Z). Then we take {J1, . . . , Jm} as a

basis of H1,1(X, C), where
∫

Ci
Jj = δij . Next, take D1, . . . ,Dk to be the basis of H4(X, Z)

corresponding to the columns of the intersection matrix (i.e. Di ∩ Cj = lji ). Note that
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while every row vector of the charge matrix gives us a 2 cycle, not every column of the

charge matrix corresponds to a compact 4 cycle. A particular column will give a compact

four cycle if its corresponding vertex is an interior point of the convex hull of {ν1, . . . , νn}.
We can then define a dual basis of four forms

∑

j,k cjk
b Jj ∧ Jk by the equation

∫

Da

∑

j,k

cjk
b Jj ∧ Jk = δab. (4.8)

Finally, note that there is a single 6 form which satisfies

∫

B3

∑

ijk

aijkJi ∧ Jj ∧ Jk = 1. (4.9)

Now let Y be the mirror of X. Then using the lattice vectors {l1, . . . , lm}, we can

immediately write down a Picard-Fuchs system of differential operators {D1, . . . ,Dj} such

that the solution space of the differential equations is the same as the period integrals of

Y . The generating function of solutions for this system is

ω =
∑

n≥0

∏

j

(

Γ(1 +
∑

i

lji (ni + ρi))
)−1

zn+ρ. (4.10)

Then, using the above bases of cohomology on X, we can describe the solution space of

{D1, . . . ,Dj} as follows. Let Πij = ∂ρi
∂ρj

ω|ρ=0. The solution space becomes

(

1,Π1, . . . ,Πm,
∑

j,k

cjk
1 Πjk, . . . ,

∑

j,k

cjk
mΠjk,

∑

i,j,k

dijkΠijk

)

. (4.11)

Here, the cjk
a are the same as in the X case, and

dijk =

∫

B3

Ji ∧ Jj ∧ Jk. (4.12)

With this data, we can construct the fourpoint functions of Y . Let ηab be the intersec-

tion matrix of four cycles on X, ηab = Da · Db. Also, set Πk = tk and
∑

j,k cjk
a Πjk = Wa.

Then the threepoint functions are defined by

Yαβγ = ∂tα∂tβWγ . (4.13)

Note that while the solutions Wa of the Picard-Fuchs system have double logarithmic

singularities, the threepoint functions are holomorphic in z. The fourpoint functions are

then

Yαβγδ =
∑

a,b

Yαβaη
abYbγδ, (4.14)

and these are also holomorphic in z.
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Finally, there is one more fact about these fourpoint functions which we will make heavy

use of [8]. Note that for the compactification B3 → X0, with X0 the given noncompact

Calabi-Yau threefold, the number of Kähler parameters has increased by 1. Let tfiber = tm
be the Kähler parameter corresponding to the compactification B3 → X0. With the above

conventions, we therefore have that {C1, . . . , Cm−1} is a basis of H2(X0, Z). If we take

Cinst.
abc to be the instanton part of the Yukawa couplings for X0, then we can compute the

Cinst.
abc from the Yαβγm in the following limit:

lim
tm→−∞

Yαβγm =

(

Jm

c1(B3)

)

· Cinst.
αβγ , (4.15)

which follows from the result in section 3. In what follows, our main strategy will be to

compute the fourpoint functions for X and then derive the threepoint functions on X0 in

the above limit. Note that we must perform the above limit in A model coordinates, i.e.

the coordinates on the complexified Kähler moduli space of X.

5. Some examples

5.1 Application to local P
1

We will here apply the canonical bundle over the projective completion technique to a local

P
1 with normal bundle either O(−1) ⊕O(−1) or O ⊕O(−2). In both cases, we find that

the resulting noncompact fourfold contains the instanton data in a natural way.

Example 5. First, we note in greater detail why it is that one might see missing instanton

information in the noncompact fourfold geometry. Consider X = O(−1) ⊕O(−1) −→ P
1,

which is determined by the vector
(

1 1 −1 −1
)

. We associate to X the noncompact

fourfold KX̄ , described by the vectors
(

0 1 1 −1 −1 0

−3 0 0 1 1 1

)

. (5.1)

This is the canonical bundle over P(O⊕O(−1)⊕O(−1)) −→ P
1. There is a nice graphical

representation of this procedure, as illustrated in figure 2. By looking at this picture, we

can gain an understanding about what the projective closure does for us computationally.

Recall [7] that on the geometry O(−1) ⊕ O(−1) −→ P
1, we are supposed to be able to

recover the instanton data by computing the ‘volume of the noncompact 4-cycle dual to

the P
1’. This is made into a sensible calculation in that paper by introducing a cutoff

parameter on this 4-cycle and performing the regulated integral. Yet, from our picture

here, we can see that the noncompact 4-cycle is given a finite volume; and moreover, we

can find that volume simply by analyzing the period integrals on the mirror of KX̄ . We

can then recover the data originally coming from O(−1) ⊕ O(−1) −→ P
1 by taking the

large fiber limit on the relevant integrals.

With that being said, we begin the computation. Denote the mirror of KX̄ by Y .

Then Y is a CY fourfold which can be described by the equation

Y = {uv + 1 + y2 + z1y4y5/y2 + y4 + y5 + z2/(y4y5) = 0} (5.2)
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X KX

D1

D2

D4

D3

D1

D3

Figure 2: The projective closure procedure. The external lines on the KX̄ picture represent the

canonical bundle direction.

where u, v ∈ C and yi ∈ C
∗.2 The Picard-Fuchs differential operators for period integrals

on Y are

D1 = θ2
1 − z1(−θ1 + θ2)(−θ1 + θ2) (5.3)

D2 = θ2(θ2 − θ1)
2 − z2(−3θ2)(−3θ2 − 1)(−3θ2 − 2).

The Poincare polynomial is

(1 − t2)(1 − t3)

(1 − t)2
= t3 + 2t2 + 2t + 1 (5.4)

which gives exactly the right number of 0,2,4 and 6 cycles, as is clear from figure 2. Corre-

sponding to the two two cycles in the A model geometry, there are two logarithmic solutions

t1, t2 of the system (5.3), two double logarithmic ones for the four cycles, W1 and W2, and

of course we have a solution from the six cycle.

Consider now the extended system of differential operators {D1, θ2D2}. The Poincare

polynomial of {D1, θ2D2} is indeed such that we should expect its solutions to be of the

type usually associated to a compact Calabi-Yau fourfold. We let M be a fourfold with

period integrals coincident with the solutions of {D1, θ2D2}. As explained in section 3, we

can take M as the mirror of O(HF )⊕ (− 3HF ) → P(O⊕O⊕O(−1)⊕O(−1)), where HF

is the class dual to the fiber curve CF = C2. Set

Y mn
(k) =

∫

M
Ω ∧∇m

δz1
∇n

δz2
Ω, m + n = k, k ∈ {4, 5}, (5.5)

Y mn
(k) = 0, k ≤ 3

where Ω is the (4,0) form on M and ∇ is the connection on the complex structure moduli

space of M . We can then use the extended Picard-Fuchs equations to derive relations

2Note that this mirror manifold is slightly different from that used in section 3. While the Picard-Fuchs

operators will be the same, this description has a factor of uv in front for dimensional reasons.
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among the Y mn
(4) . To see this in the present case, note that we have exactly four equations

θ2
1D1f = 0, θ2

2D1f = 0,

θ1θ2D1f = 0, θ2D2f = 0, (5.6)

and these imply the following relations for four point functions:

(

− Y 22
(4) + 2Y 13

(4) − Y 04
(4)

)

z1 + Y 22
(4) = 0

(

− Y 31
(4) + 2Y 22

(4) − Y 13
(4)

)

z1 + Y 31
(4) = 0 (5.7)

(

− Y 40
(4) + 2Y 31

(4) − Y 22
(4)

)

z1 + Y 40
(4) = 0 (5.8)

27Y 04
(4)z2 + Y 22

(4) − 2Y 13
(4) + Y 04

(4) = 0. (5.9)

Solving these relations completely determines the Y mn
(4) , up to the overall multiplicative

function S = Y 04
(4). We can then use the PF system again (this time with one higher power

of derivatives) to derive a system of partial differential equations for S. To see how this

works, note that the assumption of the existence of M made above implies a relationship

between four point and five point functions:

Y mn
(5) =

1

2

(

mθ1Y
m−1,n
(4) + nθ2Y

m,n−1
(4)

)

. (5.10)

Then one could use this formula, together with a degree 5 relation (for example, θ2
1θ2D1f =

0) in order to write down partial differential equations for S. If we solve these partial

differential equations in our present case, the result is S−1 = ∆f = 1 + 54z2 + 54z1z2 +

729z2
2 − 1458z1z

2
2 + 729z2

1z2
2 . We note that ∆f is exactly the discriminant locus of the

hypersurface in eq.(5.2). This turns out to be the case for all the examples we consider.

The overall normalization of the four point functions are determined from the result

in section 3. We can read off the relations of classical cohomology ring of X̄ from (5.3) as

follows:

k2
1 = 0, k2(k2 − k1)

2 = 0. (5.11)

Then we obtain,

〈C2, C2, C2, C2〉 =

∫

X̄

k4
2

−3k2
= −2

3
, 〈C1, C2, C2, C2〉 =

∫

X̄

k1k
3
2

−3k2
= −1

3
,

〈C1, C1, C2, C2〉 =

∫

X̄

k2
1k

2
2

−3k2
= 0, 〈C1, C1, C1, C2〉 =

∫

X̄

k3
1k2

−3k2
= 0,

〈C1, C1, C1, C1〉 = 0, (5.12)

So, back to the calculation. With the above, we have completely solved for the four

point functions:

Y 04
(4) = −2

3
· 1

∆f
, Y 13

(4) = −2

3
· 1 − 27z1 + 27z1z2

2∆f
, Y 22

(4) = −2

3
· 27z1z2

∆f
, (5.13)

Y 31
(4) = −2

3
· z1(−1 + 27z2 + 81z1z2)

2(z1 − 1)∆f
, Y 40

(4) = −2

3
· z2

1(−1 + 54z2 + 54z1z2)

(z1 − 1)2∆f
.
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These are not terribly enlightening in this form, but we can perform a coordinate change to

the A model using the inverse mirror map (treating the above functions as rank 4 tensors).

Let Cmn
(4) be the resulting A model fourpoint functions. We have, in particular,

lim
t2→−∞

C31
(4) = −1

3

∑

n≥1

ent1 . (5.14)

Here t1, t2 are the logarithmic solutions of the PF system. Therefore we have obtained the

instanton part of the prepotential for this space by the equation

d3Finst.

dt3
= −3 lim

t2→−∞
C31

(4). (5.15)

Example 6. We now present the result of applying the same procedure to O⊕O(−2) −→
P

1. Since this is nearly the same as the above, we give only the briefest overview. We

mention, however, that the process of taking the projective completion adds more infor-

mation than in example 1. This is because in example 1, there was already a rigid curve

which could in principle be counted through other means. Here, we have additionally com-

pactified the deformation space of the curve, which amounts to a nontrivial addition of

Gromov-Witten information.

Recall that the defining vectors are
(

0 −2 1 1 0 0

−3 1 0 0 1 1

)

. (5.16)

The mirror geometry is

Y = {uv + 1 + z2/(y5y6) + z1z
2
2/(y4y

2
5y

2
6) + y4 + y5 + y6 = 0} (5.17)

The discriminant locus of this hypersurface is

∆f = 1 + 54z2 + 729z2
2 − 2916z1z

2
2 . (5.18)

The PF operators are given by

D1 = θ2
1 − z1(−2θ1 + θ2)(−2θ1 + θ2 − 1), (5.19)

D2 = (θ2 − 2θ1)θ
2
2 − z2(−3θ2)(−3θ2 − 1)(−3θ2 − 2).

By using, once again, the PF system {D1, θ2D2}, we are able to find four point func-

tions. Translating these to the A model as in example 1, we arrive at

lim
t2→−∞

C31
(4) = −1

3

∑

n≥1

ent1 . (5.20)

We note that in this case, as above, the fiber curve has a triple intersection number 〈C3
2 〉 =

2, so that we may define the prepotential, once again, by

d3Finst.

dt3
= −3 lim

t2→−∞
C31

(4). (5.21)

Hence, we have arrived at the expected instanton expansion for each of the two most trivial

examples. We now turn to more general geometries.
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5.2 KS cases

We now demonstrate more fully the power of this approach by using the Calabi-Yau fourfold

calculation to fully determine the prepotential on KF0
,KF2

and KdP2
(up to polynomial

terms of degree 2). In a previous work [1], the authors used a classical cohomology argument

to produce extended Picard-Fuchs differential operators on KS . These operators were then

shown to reproduce the expected Yukawa couplings via the same techniques we used above

on local P
1. The disadvantage of the extended PF system is that there is not a simple

closed form for the extended system on KS . We will now show that through the fourfold

formalism, all Yukawa couplings are produced automatically. We believe that this method

should remain valid on every canonical bundle case.

Example 7. We begin with the canonical bundle over F0 = P
1 × P

1. The charge vectors

for X = KF0
are

(

l1

l2

)

=

(

−2 1 1 0 0

−2 0 0 1 1

)

. (5.22)

The canonical bundle over the projective closure P(OF0
⊕KF0

) = X̄ has the toric description







0 −2 1 1 0 0 0

0 −2 0 0 1 1 0

−2 1 0 0 0 0 1






. (5.23)

Let Y be the mirror to KX̄ . Then Y is the family of hypersurfaces

{(u, v, y4, y5, y6) ∈ C
2 × (C∗)3 : uv + 1 + z2/(y5y6) + z1z

2
2/(y4y

2
5y

2
6) + y4 + y5 + y6 = 0}.(5.24)

As usual, there is a Picard-Fuchs system of differential operators whose solutions are the

period integrals of Y :

D1 = θ2
1 − z1(−2θ1 − 2θ2 + θ3)(−2θ1 − 2θ2 + θ3 − 1),

D2 = θ2
2 − z2(−2θ1 − 2θ2 + θ3)(−2θ1 − 2θ2 + θ3 − 1),

D3 = θ3(θ3 − 2θ1 − 2θ2) − z3(−2θ3)(−2θ3 − 1). (5.25)

We let t1, t2, t3 denote the logarithmic solutions. As derived in section 3, we consider

the extended Picard-Fuchs system {D1,D2, θ3D3}. Recall that the period integrals of M ,

the mirror of O(HF ) ⊕ O(−2HF ) → P(O ⊕ O ⊕ KF0
), coincide with the solutions of

{D1,D2, θ3D3}. Set

Y mnp
(k) =

∫

M
Ω ∧∇m

δz1
∇n

δz2
∇p

δz3
Ω, m + n + p = k, k ∈ {4, 5}, (5.26)

Y mnp
(k) = 0, k ≤ 3.

Using the procedure detailed above, we can fully determine all 14 of the B model Yukawa

couplings Y mnp
(4) on M . As in the local P

1 case, we have to convert these couplings to the A

model (remembering that these functions transform as rank 4 tensors) and then take the
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limit t3 → −∞ in order to recover the correct Yukawa couplings. Let Cijk
(4) denote the A

model couplings on KX̄ . We find, in particular,

lim
t3→−∞

C301
(4) = −1

2

(

− 2q1 − 4q1q2 − 2q2
1 − 48q2

1q2 − 6q1q
2
2 − 2q3

1 − . . .
)

,

lim
t3→−∞

C211
(4) = −1

2

(

− 4q1q2 − 24q2
1q2 − 12q1q

2
2 − . . .

)

, (5.27)

where qi = eti . These, and the other two so-computed couplings, have exactly the instanton

expansion expected, up to the scaling −1/2, which was derived in section 3. This means

that we should define a prepotential F for this space by the equations

∂3F
∂ti1∂tj2

= −2 lim
t3→−∞

Cij1
(4) , i + j = 3. (5.28)

Example 8. Next, we outline the construction for KF2
, the canonical bundle over the

second Hirzebruch surface. The charge vectors for X = KF2
are

(

l1

l2

)

=

(

−2 1 1 0 0

0 0 −2 1 1

)

. (5.29)

Charge vectors of P(OF2
⊕ KF2

) = X̄ :







0 −2 1 1 0 0 0

0 0 0 −2 1 1 0

−2 1 0 0 0 0 1






. (5.30)

The mirror Y to KX̄ is

{(u, v, y2, y4, y5) ∈ C
2 × (C∗)3 : uv + 1 + y2 + z1y

2
2/y4 + y4 + y5 + z2y

2
4/y5 + z3/y2 = 0}.(5.31)

The Picard-Fuchs system on Y is in this case:

D1 = θ1(θ1 − θ2) − z1(θ3 − 2θ1)(θ3 − 2θ1 − 1),

D2 = θ2
2 − z2(θ1 − 2θ2)(θ1 − 2θ2 − 1),

D3 = θ3(θ3 − 2θ1) − z3(−2θ3)(−2θ3 − 1). (5.32)

Take t1, t2, t3 to be the mirror map. We work with the extended Picard-Fuchs systems

{D1,D2, θ3D3}, whose solutions are the same as the period integrals of the mirror of

O(HF )⊕O(−2HF ) → P(O⊕O⊕KF2
). We again compute the B model Yukawa couplings

Y mnp
(4) of M , and let Cijk

(4) be A model couplings of KX̄ . Then

lim
t3→−∞

C301
(4) = −1

2

(

− 2q1 − 2q2
1 − 2q1q2 − 32q2

1q2 − 2q3
1 − 2q4

1 − . . .
)

,

lim
t3→−∞

C211
(4) = −1

2

(

− 2q1q2 − 16q2
1q2 − 54q3

1q2 − 2q2
1q

2
2 − . . .

)

,

lim
t3→−∞

C121
(4) = −1

2

(

− 2q1q2 − 8q2
1q2 − 2q2

1q
2
2 − 18q3

1q2 − . . .
)

,
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lim
t3→−∞

C031
(4) = −1

2

(

− 2q1q2 − 4q2
1q2 − 6q3

1q2 − 2q2
1q

2
2 − . . .

)

(5.33)

We note, in particular, that the instanton number N0,1 which was was computed to be 1/2

in [2] via localization, has a value of 0 in our calculation. This is in accordance with the

localization computation performed in section 3.

Then the prepotential Finst. is found by

∂3Finst.

∂ti1∂tj2
= −2 lim

t3→−∞
Cij1

(4) , i + j = 3. (5.34)

Example 9. Next, we briefly present the same computational procedure carried out on

KdP2
. Recall that this is defined by the vectors







−1 1 −1 1 0 0

−1 −1 1 0 0 1

−1 0 1 −1 1 0






; (5.35)

KdP2
is the canonical bundle over the blowup of P

2 at two points.

Then we can immediately write the corresponding vectors for the 4fold over KdP2
,

namely KP(OdP2
⊕KdP2

):











0 −1 1 −1 1 0 0 0

0 −1 −1 1 0 0 1 0

0 −1 0 1 −1 1 0 0

−2 1 0 0 0 0 0 1











. (5.36)

Let Y be the mirror to this fourfold. Y is given by

Y = {uv + 1 + z1y4y5/y3 + y3 + y4 + y5 + z2y3y4/y5 + z3/(y3y5) + z4/y4 = 0} (5.37)

The Picard-Fuchs system for period integrals on Y consists of six order two operators

D1 = (θ1 − θ2)(θ1 − θ3) − z1(−θ1 − θ2 − θ3 + θ4)(−θ1 + θ2 + θ3),

D2 = (θ2 − θ1 + θ3)θ2 − z2(−θ1 − θ2 − θ3 + θ4)(−θ2 + θ1),

D3 = (θ3 − θ1 + θ2)θ3 − z3(−θ1 − θ1 − θ3 + θ4)(−θ3 + θ1),

D4 = (θ1 − θ3)θ2 − z1z2(−θ1 − θ1 − θ3 + θ4)(−θ1 − θ1 − θ3 + θ4 − 1),

D5 = (θ1 − θ2)θ3 − z1z3(−θ1 − θ1 − θ3 + θ4)(−θ1 − θ1 − θ3 + θ4 − 1),

D6 = (θ4 − θ1 − θ2 − θ3)θ4 − z4(−2θ4)(−2θ4 − 1).

Let t1, . . . , t4 be the logarithmic solutions. We define the fourpoint functions Y mnpq
(4) in

exact analogy with the earlier cases. We then solve for these fourpoint functions using the

relations from the extended Picard-Fuchs system

{D1, . . . ,D5, θ4D6}. (5.38)
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After transforming to the A model (into functions Cmnpq
(4) ) and taking the large fiber

limit, what we find is perfect agreement on all Yukawa couplings for the del Pezzo. We

write here the first two such couplings:

lim
t4→−∞

C3001
(4) = −1

2

(

q1 + q2
1 − 2q1q2 − 2q1q3 + 3q1q2q3 − 2q2

1q
2
2 − 2q2

1q
2
3 − 32q2

1q2q3 + . . .
)

lim
t4→−∞

C2101
(4) = −1

2

(

− 2q1q2 + 3q1q2q3 − 16q2
1q2q3 − 2q2

1q
2
2 + . . .

)

(5.39)

These are as expected, up to the overall −1/2, which we predicted in section 3. This means

that we recover the right instanton expansion via the normalization

∂3Finst.

∂ti1∂tj2∂tk3
= −2 lim

t4→−∞
Cijk1

(4) , i + j + k = 3 (5.40)

6. Fourfold constructions for threefolds with b4 = 0

From the above, we have seen that while we can recover much additional information by

using the projective closure plus canonical bundle technique, this seems to be unsuitable

of there are too many noncompact divisors in the uncompactified geometry. The reason

for this is as follows. If we attempt a straightforward projective closure procedure on a

space with three or more noncompact divisors, the Poincare polynomial is badly behaved,

and we are thus unable to use the technology introduced above in the computation of

fourpoint functions. In particular, any local Calabi-Yau satisfying dimH2(X, Z) > 1,

dim H4(X, Z) = 0 has at least three noncompact divisors, so we need new methods of

analysis for such spaces.

With these difficulties in mind, we will develop tools tailor made to address this prob-

lem. In fact, we are able to show that for a large class of examples, by performing a partial

compactification followed by a flop, we can reduce the problem to a KS type case. Then we

have only to refer back to the methods introduced in the preceding sections on KS , flop the

resulting Yukawas back and take the appropriate limits to recover the Yukawa couplings

on the geometry of interest. We will work through several examples to get a feel for the

computational techniques.

6.1 The two one parameter cases

Example 10. We begin with the conifold, X1 = O(−1) ⊕ O(−1) −→ P
1. While the

Yukawa coupling for the conifold has been derived above through simpler means, we present

this example as a template for the types of methods we will use in the sequel.

First, we reemphasize that the basic reason that local mirror symmetry (that is, local

mirror symmetry via Picard-Fuchs systems) breaks down for the conifold is that there is

no 4 cycle on this space. Hence, the PF system on the mirror cannot have a double log

solution, and therefore we cannot recover an instanton expansion.

With this as motivation, we will consider a simple noncompact threefold which contains

the conifold geometry, as well as a new four cycle. The candidate ‘compactification’, which
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X1 X̃1

Figure 3: Toric diagram for the addition of a 4 cycle to O(−1) ⊕O(−1) −→ P1.

we call X̃1, is depicted in figure 3, and is defined by the toric charge vectors
(

l1

l2

)

=

(

1 1 −1 −1 0

−3 0 1 1 1

)

. (6.1)

Now, we want to connect this to our previous constructions, i.e. the canonical bundle over

a surface case. But this is easy, because X̃1 admits a flop to KF1
:

(

−l1

l1 + l2

)

=

(

−1 −1 1 1 0

−2 1 0 0 1

)

. (6.2)

That is, X̃flop
1

∼= KF1
. Now we use the machinery of previous sections. Let KK̄F1

be the

noncompact fourfold associated to KF1
, defined by charge vectors







0 −1 −1 1 1 0 0

0 −2 1 0 0 1 0

−2 1 0 0 0 0 1






. (6.3)

We denote the mirror of KK̄F1

by Y . This procedure is summarized by the following

sequence of operations:

X1
// X̃1

// X̃flop
1

∼= KF1

// KK̄F1

Then exactly as in the KF0
case, we can compute B model fourpoint functions Y mnp

(4) (z1, z2,

z3) on Y by using the Picard-Fuchs system. Here z1, z2, z3 are the local variables on the

complex structure moduli space of Y .

The next step is to carry the B model fourpoint functions across the flop on the B

model, defined by the change of variables

z1 = w−1
1 , z2 = w1w2, z3 = w3. (6.4)

We let Ỹ be the manifold we get by using the flop transformation on Y . Here, we have to

remember that the Y mnp
(4) (z1, z2, z3) transform as rank 4 tensors. Then, we have fourpoint
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functions Ỹ mnp
(4) (w1, w2, w3) on Ỹ , which is also the mirror of the fourfold over X̃1. Let

t1, t2, t3 be the logarithmic solutions of the Picard-Fuchs system on Ỹ .

Next, use the inverse mirror map w(t) to convert the Ỹ mnp
(4) (w1, w2, w3) into A model

fourpoint functions C̃mnp
(4) on the fourfold over X̃1, again taking the tensor property into

account. And then finally, we can recover the expected Yukawa threepoint function CX1

on X1 in the limit as t2, t3 → −∞.

Since this whole procedure has been rather complicated, we summarize the various

steps in the following diagram.

Y mnp
(4)

// Ỹ mnp
(4)

// C̃mnp
(4)

// CX1

Y // Ỹ // KK̄
X̃1

// X1

The functions along the top line are the fourpoint functions of the corresponding spaces

on the bottom line. On the bottom line, the first arrow is given by the flop, the second by

the mirror map, and the third by taking the double limit t2, t3 −→ −∞. These two limits

are to be understood as first taking the size of the P
2 ↪→ X̃1 to infinity, and then taking

the limit of the large compactification fiber (that is, the limit in which the noncompact

fourfold becomes a noncompact threefold). The result of this is

CX1
= lim

t2,t3→−∞
C̃301

(4) = −1

2

et1

1 − et1
. (6.5)

Here, an extra factor −1
2 appear because we have used a P

1 compactification.

Example 11. For our next example, we revisit X2 = O ⊕ O(−2) −→ P
1. Once again,

though we have already worked out the Yukawa coupling for this case through the fourfold,

we now want to take a look at another way of deriving this fourpoint function. The reason

is that this new viewpoint is the one that will prove to be naturally applicable to the

general case.

As in the previous example, we want to add a four cycle at some convenient location

in the geometry in order to recover the instanton expansion. In contrast with the previ-

ous example, we also have to simultaneously compactify the one parameter noncompact

deformation space of this P
1. The only choice that satisfies both of these criteria is KF0

:
(

−2 1 1 0 0

−2 0 0 1 1

)

. (6.6)

This is depicted in figure 1.

Now, we have already done the fourfold calculation on KF0
, so we only have to refer

to the Yukawa couplings above, eqn. (5.27). Let C
(301)
(4) be that taken from eqn. (5.27), and

let t1, t2 be the sizes of the two P
1s in F0. Then we find, in the relevant limit,

lim
t2,t3→−∞

C
(301)
(4) = −1

2

(

− 2q1 − 2q2
1 − 2q3

1 − . . .
)

(6.7)
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So, even after taking into account the extra factor −1/2 from the fourfold compactification,

we still see that the instanton expansion is twice what we expect it should be. The reason

for this is, however, easy to see. In the KF0
geometry, if we perform a direct localization

calculation, then we find that there are two curves in each of the two homology classes,

which is obvious from the toric diagram. Thus, in order to recover the correct expansion,

we have to remove by hand the excess state. After doing this we indeed get what we were

expecting, complete with the overall negative sign [9].

6.2 Higher parameter examples

We now present our computational scheme in its general form. The basic idea is to complete

all curves with normal bundle O ⊕O(−2) by using the F0-type compactification given in

Example 11. This kind of example was first considered in [10]. After doing this, we find

that we can recover all Yukawa couplings using the same trick as above, i.e. by flopping to a

canonical bundle case and then taking the noncompact fourfold over the canonical bundle.

This method works well for a reasonably broad class of geometries. We will carefully go

through the details of two more examples.

Example 12. We take X to be a local threefold with dimH2(X, Z) = 2,dim H4(X, Z) = 0

defined by the charge vectors

(

l1

l2

)

=

(

−2 1 1 0 0

1 −1 0 1 −1

)

. (6.8)

There are two curves Ct,Cs corresponding to the vectors l1, l2 respectively. From the vectors

we can read off that NCt/X
∼= O ⊕ O(−2),NCs/X

∼= O(−1) ⊕ O(−1). There is one more

curve Cs+t which also has a normal bundle of O(−1) ⊕O(−1).

Then, from the examples of the previous section it is clear that we only need to

compactify the Ct curve in order to derive a complete set of Yukawa couplings using the

fourfold construction. Let the space we get by compactifying the Ct family be denoted by

X̃ . Then X̃ is given by the charge vectors







l0

l1

l2






=







−2 0 0 0 1 1

−2 1 1 0 0 0

1 −1 0 1 −1 0






. (6.9)

In order to convert this to a canonical bundle case, we can flop to KdP2
:







l0 + l2

l1 + l2

−l2






=







−1 −1 0 1 0 1

−1 0 1 1 −1 0

−1 1 0 −1 1 0






. (6.10)

This is depicted in figure 4. Now that we have a canonical bundle case, we can proceed

as usual with the fourfold calculation. Let t3 be the Kähler parameter corresponding to

P(OdP2
⊕ KdP2

). Since we have already worked out all the fourpoint functions for the del

Pezzo, we can just use these and flop them back to find the appropriate Yukawa couplings
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X X̃flopX̃

Figure 4: Geometric transformations of X .

for the present case. After doing this, we find the threepoint Yukawa couplings on the

original geometry in the large fiber limit:

lim
t0,t3→−∞

C301
(4) = −1

2

(

− 2
et1

1 − et1
+

et1+t2

1 − et1+t2

)

, (6.11)

lim
t0,t3→−∞

C210
(4) = −1

2

et1+t2

1 − et1+t2
, (6.12)

lim
t0,t3→−∞

C121
(4) = −1

2

et1+t2

1 − et1+t2
, (6.13)

lim
t0,t3→−∞

C031
(4) = −1

2

(

1 +
et2

1 − et2
+

et1+t2

1 − et1+t2

)

. (6.14)

We again see the same phenomena from the earlier examples. First, the overall −1/2 comes

from P
1 compactification associated to KdP2

. Secondly, we have to remove by hand the

overcounted state which is represented by

−2
et1

1 − et1
. (6.15)

After this, we find complete agreement with the expected instanton information on this

space [10]. In other words, we may define a prepotential for this example by

∂3Finst.

∂ti1∂tj2
= −2 lim

t0,t3→−∞
Cij1

(4) , i + j = 3 (6.16)

up to the overcounted (−2, 0) curve.

Example 13. Finally, we want to consider a rather complicated example, which will help

to illustrate the general procedure. The space we have in mind was considered in [12], and

is specified by charge vectors






l1

l2

l3






=







1 0 0 1 −1 −1

0 1 0 −1 1 −1

0 0 1 −1 −1 1






. (6.17)

– 33 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
1

Figure 5: The trivalent curve problem.

X Xflop

X̃flop

Figure 6: Geometric manipulations of the trivalent curve.

We denote this by X. Note that dimH2(X) = 3,dim H4(x) = 0, and the three curves

in X have a single point of intersection. The toric graph of this space, complete with

triangulation, is shown in figure 5.

Now, from the previous examples of this type, the general idea we have followed is to

‘compactify’ the curves with normal bundle O ⊕O(−2) via the scheme we originally used

for the one parameter space O ⊕ O(−2) → P
1. In our present situation, such curves are

not evident, but we can make them manifest by performing a flop transition. We call the

resulting space Xflop, and its charge vectors are






−l1

l2 + l1

l3 + l1






=







−1 0 0 −1 1 1

1 1 0 0 0 −2

1 0 1 0 −2 0






. (6.18)

Then, we see that the second and third curves have normal bundle O ⊕O(−2).
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In order to keep the calculation from getting too unwieldy, we will only compactify

one of the (−2, 0) curves, and proceed with the calculation on the resulting space. Upon

doing this, we get a new space X̃flop specified by charge vectors










k0

k1

k2

k3











=











0 0 0 1 −2 0 1

−1 0 0 −1 1 1 0

1 1 0 0 0 −2 0

1 0 1 0 −2 0 0











. (6.19)

From the charge vectors alone, it is a bit hard to see what is going on, so we have given a

diagrammatic representation of this procedure in figure 6.

Before diving into the details, let us briefly consider what exactly it is that we are

expecting to learn through the study of this space X̃flop. The only real difference between

X̃ and X̃flop is that on the latter, a single (−2, 0) curve family has been compactified. If we

look back at the original geometry X, this corresponds to ‘filling in’ the curve information

corresponding to the l1+l3 curve on X. Therefore, the predicted result is that the instanton

expansion we find will enumerate curve data corresponding to the curves l1, l2, l3, l1+l2+l3,

and l1 + l3. That is, we will obtain all information corresponding to curves with normal

bundle O(−1)⊕O(−1), plus the curve l1+l3 (which has normal bundle O⊕O(−2)) that we

have completed by using our compactification. Finally, this last curve should be counted

with an overall −2 in the instanton sum, as a result of the type of compactification we are

using.

With that being said, let’s proceed with the computation. The first thing we have to do

is associate a noncompact fourfold to the above geometry X̃flop. In the previous examples,

we have done this by first reducing to a canonical bundle case and then compactifying the

canonical bundle. While this can indeed be done here, we claim in the present case that it

suffices to compactify the variable corresponding to the compact divisor in the geometry.

From Figure 6, it is clear that there is exactly one compact divisor, namely P
1 × P

1, and

moreover this corresponds to the fifth column of the matrix of charge vectors defining X̃flop.

One can see this by recalling the charge vectors for KP1×P1:
(

−2 1 1 0 0

−2 0 0 1 1

)

(6.20)

Here, the divisor corresponding to the first column represents the P
1 × P

1, and we note

that the fifth column of the charge vectors for X̃flop also contains two −2 entries.

Then, it is straightforward to write down the charge matrix of the fourfold over X̃flop:














m0

m1

m2

m3

m4















=















0 0 0 0 1 −2 0 1 0

0 −1 0 0 −1 1 1 0 0

0 1 1 0 0 0 −2 0 0

0 1 0 1 0 −2 0 0 0

−2 0 0 0 0 1 0 0 1















. (6.21)

We denote the above space by X̂. Let us consider a bit further why it is that we expect

this fourfold to reproduce the instanton information we are looking for. Previously, most
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of our successful calculations have been done on a canonical bundle example. Notice first

of all that we can perform two flops on X̃flop to reach a canonical bundle case:










−1 0 0 0 −1 1 1

1 1 0 0 0 −2 0

0 −1 0 1 −1 1 0

0 1 1 −2 0 0 0











(6.22)

This is done by first flopping the second vector of X̃flop, and then flopping the fourth vector

of the resulting space. On this matrix, it is clear that the fifth column corresponds to the

single compact divisor, and furthermore all entries of the fifth column are less than or equal

to 0, so that this is a KS case. This can also be seen by constructing the vertices for this

manifold. Now, since the compactification variable is fixed across the flop, it should be

sufficient to just work directly on the space X̂ above. And indeed, this will turn out to be

the case.

Let Ŷ be the mirror manifold to X̂ . We omit the details, but merely note that there

are 10 order two Picard-Fuchs operators {D1, . . .D10} whose solution space describes the

period integrals of Ŷ . Let t0, . . . , t4 be the logarithmic solutions of this system. As in all

previous cases, we use the extended set of differential operators {D1, . . . θ5D10} in order to

solve for the fourpoint functions of Ŷ . Let Ŷ mnpqr
(4) be the fourpoint functions so obtained.

Then we first use the inverse of the mirror map t0, . . . , t4 to transform these fourpoint

functions on Ŷ into fourpoint functions Ĉmnpqr
(4) on X̂. Next, we recover the threepoint

functions Cnpq
flop on Xflop in the double scaling limit:

Cnpq
flop = lim

t0,t4→−∞
Ĉ0,n,p,q,1

(4) . (6.23)

And lastly, we can compute the threepoint functions we are looking for, Cnpq on X, by

reversing the flop transition on Cnpq
flop (this function transforms as a rank 3 tensor). After

all is said and done, we arrive at the threepoint functions for X. For brevity, we list only

a representative subset of the results here:

C300 = −1

2

( et1

1 − et1
− 2

et1+t3

1 − et1+t3
+

et1+t2+t3

1 − et1+t2+t3

)

, (6.24)

C030 = −1

2

( et2

1 − et2
+

et1+t2+t3

1 − et1+t2+t3

)

, (6.25)

C201 = −1

2

(

− 2
et1+t3

1 − et1+t3
+

et1+t2+t3

1 − et1+t2+t3

)

, (6.26)

C021 = −1

2

et1+t2+t3

1 − et1+t2+t3
. (6.27)

From these functions, we can see many of the previously advertised features of the com-

pactification scheme we have chosen. As expected, the t1 + t3 curve appears with an overall

−2 factor, from the P
1 × P

1 type compactification. Besides this, the expansion is missing

both of the other double curve classes t1 + t2 and t2 + t3. In other words, for example, we

would expect to find the term

− et2+t3

1 − et2+t3
(6.28)

– 36 –



J
H
E
P
0
3
(
2
0
0
6
)
0
6
1

X̃flop
X̂

Figure 7: Taking the other limit on X̃flop.

in the expansion for C021, since the t2 + t3 curve has normal bundle O⊕O(−2). This can

be seen from the topological vertex calculation [9].

Nonetheless, since the original space X is pairwise symmetric under the exchange of

any two of the curves with normal bundle O(−1) ⊕O(−1), it is clear that we could have

compactified either of the other two (−2, 0) curves and picked up the missing terms ala

eqn.(6.28). Therefore, up to the overall fraction 1/6, we have arrived at the expected

instanton expansion.

The extra factor −1/2 appears in the same way as in all previous examples.

Finally, to close this example, note that there is in fact more we can do with the

space X̃flop. That is, instead of taking the limit t0 → −∞, we can also consider the limit

t3 → −∞. The result of this is shown in figure 7. This is a different Calabi-Yau, which we

denote by X̂ , and we can use the same results above in this new limit in order to compute

the threepoint functions on X̂ . Without going into any detail, we merely list two of the

threepoint functions obtained this way:

C003
X̂

= −1

2

(

− 2
et2

1 − et2
+

et1+t2

1 − et1+t2
+

et0+t1+t2

1 − et0+t1+t2

)

, (6.29)

C300
X̂

= −1

2

( et0+t1

1 − et0+t1
+

et0+t1+t2

1 − et0+t1+t2

)

. (6.30)

In other words, the curve information corresponding to the term

et0

1 − et0
(6.31)

is missing. This is expected, because we did not compactify this curve family.
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6.3 A word about sign conventions

In the two preceding examples, the type of compactification we used was chosen according

to topological vertex calculations [9]. In the following, we present an argument that in

some sense, the sign choice coming from the vertex computation is artificial (that is, it is

extrinsic to the geometry).

Consider again Example 12. The compactification used there, which was originally

suggested in [10], was made so that we would find the following result for the instanton

part of the prepotential:

F inst =
∑

n>0

−ent1 + en(t1+t2) + ent2

n3
(6.32)

Recall that t1 was the complexified Kähler parameter for the curve with normal bundle

O ⊕ O(−2), and the Kähler parameters t1 + t2 and t2 both correspond to curves with

normal bundle O(−1)⊕O(−1). In other words, we have associated a minus sign to (0,−2)

curves, and a plus sign for (−1,−1) curves.

However, we claim that from the geometry of Example 12 alone, this sign choice is not

unique. For example, were we to use instead the instanton part

(

F inst
)′

=
∑

n>0

ent1 + en(t1+t2) + ent2

n3
, (6.33)

the answer would be equally ‘acceptable’, in the following sense. We recall from [3],[1] the

conjecture that the B model Yukawa couplings should be simple rational functions, such

that the denominator consists of the components of the discriminant locus. Then, if we

use either F inst or
(

F inst
)′

(together with the triple intersection numbers conjectured in

[1]), we find rational B model Yukawa couplings of exactly the same level of complexity.

Moreover, the resulting extended Picard-Fuchs system [1] is also of roughly the same form.

We will add further evidence to this claim in the appendix, where we construct the

extended Picard-Fuchs system for the mirror of the trivalent curve for both choices of sign

convention. Indeed, it turns out that in both cases, we find a system of nearly identical

complexity.

7. Conclusion

The main features of this paper are summarized as follows.

First, in [1], we made use of the instanton expansion for KS cases in order to compute

the allowed values for the classical triple intersection numbers; in the present work, through

the use of the canonical bundle formula, we have carried out the computation of these

numbers in a way that is more intrinsic to the geometry.

Secondly, we have seen, besides the construction of the prepotential, the resolution of

another problem encountered in [1]. In [1], in order to construct the extended Picard-Fuchs

system for X such that b4(X) = 0, we took for granted the known instanton expansion

from the topological vertex. Above, we have overcome this through the use of a special
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compactification scheme [10] which is known to agree with the vertex result; the advantage

of this is that, in principle, it applies to any X with b4(X) = 0.

We briefly mention some directions for future study. We are currently working to

extend our results to non-nef toric varieties and their canonical bundles, e.g. KFn for

n ≥ 3 and P(O ⊕ O(k) ⊕ O(−2 − k)) for k ≥ 1. In both cases, we will need to take

advantage of the machinery of generalized mirror symmetry (ala Jinzenji, Iritani, Coates-

Givental) in order to complete the calculation. We hope to report on these matters in

future work.
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A. Extended Picard-Fuchs system of trivalent toric graph

Since this model is symmetric under the permutation of the three Kähler parameters, we

present a minimal set of formulas for brevity. First, we start from the A-model Yukawa

couplings obtained from the body of this paper with the constant term predicted in [1]:

Y111 =
et1

1 − et1
− et1+t2

1 − et1+t2
− et1+t3

1 − et1+t3
+

et1+t2+t3

1 − et1+t2+t3
,

Y112 = − et1+t2

1 − et1+t2
+

et1+t2+t3

1 − et1+t2+t3
,

Y123 =
1

2
+

et1+t2+t3

1 − et1+t2+t3
. (A.1)

We can also read off the mirror maps from the ordinary Picard-Fuchs system of trivalent

toric graph as follows:

t1 := log(z1) + log

(

1

2
(1 +

√
1 − 4z2z3)

)

− log

(

1

2
(1 +

√
1 − 4z1z2)

)

−

− log

(

1

2
(1 +

√
1 − 4z1z3)

)

. (A.2)

Then, we can obtain 3-fold version of the A-model Gauss-Manin system for this toric-graph,

as was defined in [1]. After transforming this Gauss-Manin system into the B-model by

the above mirror maps, we can obtain the extended Picard-Fuchs system {D1,D2,D3} as

relations of the B-model Gauss-Manin system. Here, we present D1 as follows. D2,D3 are

obtained from the cyclic permutation of the subscripts 1, 2, 3 of D1:

D1 := (−5z2
1z2

3 + 2z3
1z2

2 + 5z1z2 − 10z2
1z3z2 + 4z3

1z2
2z3 + 2z2z

2
3z1 + 2z3

1z2
3 + z1 +

8z3
1z3z2 + 6z2

1z2z
2
3 + 6z2

1z2
2z3 − 6z1z2z3 − 8z2

1z2
2z

2
3 − 1 + 2z2

2z3z1 − 5z2
1z2

2 − 4z2
1z3 +

4z3
1z2z

2
3 + 5z1z3 − 4z2

1z2)θ
2
1 + ((−4z1z3 + 2z1z2 + 2z2

1z3 − 4z3
1z2

3 − 4z2z
2
3z1 −

4z2
2z3z1 − 2z2

1z2 − 12z2
1z2z

2
3 − 4z2

1z2
2z3 + 16z2

1z2
2z

2
3 + 4z3

1z2
2 + 10z2

1z2
3 − 6z2

1z2
2 −
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8z3
1z2z

2
3 + 8z3

1z2
2z3 + 8z1z2z3)θ2 + z1z3 + 4z3

1z2
2z3 − 2z2

1z2
2z3 + z1z2 +

(−4z1z2 + 2z1z3 − 2z2
1z3 + 4z3

1z2
3 − 4z2z

2
3z1 − 4z2

2z3z1 + 2z2
1z2 − 4z2

1z2z
2
3 − 12z2

1z2
2z3 +

16z2
1z2

2z2
3 − 4z3

1z2
2 − 6z2

1z2
3 + 10z2

1z2
2 + 8z3

1z2z
2
3 − 8z3

1z2
2z3 + 8z1z2z3)θ3 − 2z2z

2
3z1 −

z2
1z3 − 2z2

2z3z1 − 3z2
1z2

2 − z2
1z2 − 2z2

1z3z2 + 2z1z2z3 + 2z3
1z2

3 + 2z3
1z2

2 − 3z2
1z2

3 + 8z2
1z2

2z2
3 +

4z3
1z2z

2
3 − 2z2

1z2z
2
3)θ1 + (4z3

1z2z
2
3 − 4z3

1z2
2z3 − 2z1z2z3 − z1z2 + 2z2

1z2z
2
3 − 8z2

1z2
2z2

3 +

2z2
1z2

2z3 + 2z2z
2
3z1 + 2z2

2z3z1 − z2
1z3 − 2z3

1z2
2 − 3z2

1z2
3 + 3z2

1z2
2 + z2

1z2 + 2z3
1z2

3 +

z1z3)θ3 + (−8z2
1z2

2z2
3 + 2z2z

2
3z1 + 6z2

1z2z
2
3 + 4z3

1z2
2z3 + 2z3

1z2
2 − 2z1z2z3 + 4z3

1z2z
2
3 +

2z2
1z3 − 5z2

1z2
3 + 2z2

1z3z2 − 2z2
1z2

2z3 + 2z3
1z2

3 + 2z2
2z3z1 − 8z3

1z3z2 − z2
1z2

2)

(−4z3
1z2z

2
3 + 4z3

1z2
2z3 − 2z1z2z3 + 2z2z

2
3z1 + 2z2

1z2z
2
3 − 8z2

1z2
2z2

3 + 2z2
1z2

2z3 + 3z2
1z2

3 +

2z2
2z3z1 + z2

1z3 + 2z3
1z2

2 − 2z3
1z2

3 + (4z2z
2
3z1 − 4z2

1z2 − 2z1z2 + 4z2
1z2z

2
3 − 4z3

1z2
3 − 4z2

1z3 −
16z2

1z2
2z2

3 − 4z3
1z2

2 + 4z2
2z3z1 + 16z3

1z3z2 + 6z2
1z2

3 + 6z2
1z2

2 − 2z1z3 + 4z2
1z3z2 − 8z3

1z2z
2
3 −

8z3
1z2

2z3 + 4z2
1z2

2z3 − 4z1z2z3 + 2z1)θ3 − 3z2
1z2

2 − z2
1z2 + z1z2 − z1z3)θ2 +

(−5z2
1z2

2 + 2z2
2z3z1 + 2z3

1z2
3 + 2z2

1z2 − 8z2
1z2

2z
2
3 + 2z2

1z3z2 + 2z3
1z2

2 − 2z1z2z3 −
8z3

1z3z2 − z2
1z2

3 + 2z2z
2
3z1 + 6z2

1z2
2z3 + 4z3

1z2
2z3 + 4z3

1z2z
2
3 − 2z2

1z2z
2
3)θ

2
3. (A.3)

This operator is rational but really complicated. Of course, this system is one example of

the extended Picard-Fuchs system for this space, and there may well be a more concise

extended Picard-Fuchs system. We note that, as mentioned previously, we arrive at an

operator of nearly the same complexity by instead considering a system in which the

overall scaling of all the -2 curves are taken to be +1 instead of -1. This is therefore some

indication that the -1 factor coming from the topological vertex calculation is not intrinsic

to the geometry.

Finally, we present the B-model Yukawa couplings obtained from the above extended

Picard-Fuchs system. These Yukawa couplings are indeed transformed into the A-model

Yukawa couplings (A.1) by the mirror transformation (A.2).

B-model Yukawa coupling of trivalent toric graph.

Y111 = z1(4z2z3−1)2(16z3
2z2

1z3−4z3
2z1−96z2

2z2
3z2

1 +20z2
2z3z1+32z2

1z2
2z3−z2

2−8z2
1z2

2 +

16z3
3z2z

2
1 +20z2z

2
3z1+32z2

1z2z
2
3−32z1z2z3−2z2z3+4z1z2+2z2−1−4z3

3z1+

2z3−8z2
1z2

3−z2
3 +4z1z3)T (z1, z2, z3),

Y122 = (4z2z3−1)(−1+4z1z3)
2(4z2z

2
3z1−z2

3−12z2
1z3z2+16z2

1z2
2z3−4z2

2z3z1+z1z3

−z2z3+z3−4z2
1z2

2 +3z1z2−2z1+2z2
1)z2T (z1, z2, z3),

Y123 =
1

2
(4z1z2−1)(4z2z3−1)(−1+4z1z3)(32z

2
2z2

3z2
1−16z2

1z2z
2
3−16z2

2z2
3z1+

2z2
3z1+2z2

3z2−16z2
1z2

2z3+2z2
1z3+12z1z2z3−2z1z3+2z2

2z3−2z2z3−z3+1+

2z2
1z2−z2−2z1z2−z1+2z2

2z1)T (z1, z2, z3),
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T (z1, z2, z3) = 1/((4z1z2−1)2(4z2z3−1)2(4z3z1−1)2(4z1z2z3−z1−z3+1−z2)). (A.4)
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