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1. Introduction

The basic utility of mirror symmetry is its power in the computation of Gromov-Witten
invariants. In terms of classical, compact mirror symmetry, these invariants are computed
from the coeflicients of a generating function, known as the prepotential. What one does
in practice is solve for the period integrals of the mirror manifold, and then identify the
prepotential and mirror map as certain linear combinations of ratios of these period inte-
grals.

In the context of local mirror symmetry, in which one considers mirror symmetry for
noncompact Calabi-Yau manifolds, such an approach has not appeared to date. In fact,
current technology does not provide us with a means of defining the prepotential in these



cases. This problem emerges because the local mirror manifold does not have ‘enough’
period integrals to determine the prepotential. While we can often turn to localization
formulas to determine Gromov-Witten invariants, this is generally more cumbersome than
the corresponding B model calculation. The above problem becomes manifest in the case
of the mirror computation of Kr,, using the double log solution of the usual Picard-Fuchs
system. As is well known, the Hirzebruch surface F5 has one Calabi-Yau direction in the
two dimensional Kéhler cone. Therefore, local Gromov-Witten invariants associated with
curves that have positive degree only in this direction cannot be computed from the double
log solution, as was suggested in [J]. In [fl], we proposed the idea of an extended Picard-
Fuchs system for local mirror symmetry, obtained by modifying the usual Picard-Fuchs
system of local mirror symmetry. The extended Picard-Fuchs system has a larger solution
space than the usual one, and moreover it has a triple log solution. Therefore, we can
compute the full prepotential of a local Calabi-Yau threefold. In particular, in the case
of Kp,, the triple log solution includes the information of local Gromov-Witten invariants
that cannot be detected by the double log solution! However, a basic problem with the
constructions of [f[] is that the instanton expansion of the prepotential was used to derive
the extended system. In the case of Kg, where S is a compact toric surface, this instanton
data fixes the triple intersection numbers, which are crucial in the construction of the
extended Picard-Fuchs system. For X a local Calabi-Yau 3-fold with dim H4(X,Z) = 0,
we had to make direct use of the instanton part of the A-model prepotential to derive an
extended Picard-Fuchs system.

The aim of this paper is to overcome these weak points in the construction of the
extended Picard-Fuchs system. In the case of Kg, we derive a natural definition of the
classical triple intersection numbers of Kg, by generalizing the definition of local Gromov-
Witten invariants given in [B]. This definition matches the results in and explains the
moduli parameter of the classical triple intersection numbers found in [fll. Therefore, we
can construct an extended Picard-Fuchs system of Kg without using the instanton part of
the prepotential of Kg.

On the other hand, we may also take advantage of our formula for intersection theory
in order to provide an alternate derivation of the prepotential of local mirror symmetry.
In the event that X = Kg, the procedure goes as follows. First, we construct a compact
3-fold by taking the projective closure of X : X = P(Og @ Kg). We then consider the
local Calabi-Yau 4-fold Ky and construct an extended Picard-Fuchs system of Ky by
generalizing the results for Kg. With this extended Picard-Fuchs system, we can compute
the 4-point Yukawa couplings of K g. Finally, we can see the instanton part of the three
point functions of X by taking the large fiber limit of the fourpoint functions. This provides
a simple algorithm by which we can extract the exact form of the prepotential for Kg (up
to polynomial terms of degree 2).

A problem with this approach appears if the dimension of the compactification fiber
gets too large. In particular, we run into this difficulty for any noncompact threefold X
such that dim He(X,Z) > 2, dim Hy(X,Z) = 0. For such examples, we provide a method
by which one may reduce the problem to a Kg case. Then, in the appropriate limits, we
are again able to give a definition for the prepotential.



The organization of this paper is as follows. In section [, we first propose a conjecture
on a geometrical interpretation of the 3 point functions of local mirror symmetry for Kg,
which is a straightforward generalization of the definition given in [}], and use this to derive
a formula for classical triple intersection numbers for Kg. Then we compute explicitly
these numbers for the examples used in [ from the localization formula. In section [,
we extend the results of the previous section to the local fourfold K¢ and construct the
extended Picard Fuchs system of K g in the case of X = Kg. Next, we clarify the relation
between the large fiber limit of the 4 point functions of K and the 3 point functions
of X. We also justify the process of the computation of the B-model 4-point functions
by using the extended Picard-Fuchs system. Section M| gives the toric construction of the
projective closure X when X is a vector bundle. Section [ contains applications of the
fourfold construction to Kg and the total space of P! with normal bundle O(—1) ® O(—1)
or O @ O(—2). Section f| details methods of dealing with more exotic cases. Finally, the
extended Picard-Fuchs system (in the sense of [fl]) for the trivalent curve is given in the

PP .

2. Fractional intersection theory on Ky

We begin by discussing fractional intersection theory for noncompact Calabi-Yau three-
folds [f, [. The discussion here will be necessary for fixing the form of the extended
Picard-Fuchs system, and will eventually allow us to fix the overall scaling factor of the
prepotential exactly.

2.1 A conjecture on Yukawa couplings

In our previous paper [[], we computed the Yukawa couplings (3-point functions) of a local
Calabi-Yau 3-fold Kg (S: toric 2-fold) by using the extended Picard-Fuchs system. In
this subsection, we first write down a conjecture on the geometrical interpretation of these
Yukawa couplings:

Conjecture 1. The Yukawa couplings computed in [i] are the three point functions
(04,(21)0,(22)0.(23))0 of the topological sigma model on Kg without coupling to topo-
logical gravity:

(01.(21)05,(22)0s.(23))0 = Y 4104, (21)0,(22) 0. (23)) (2.1)
d
a ctop(leev*KS) . . .
= q ev; (Jg)evs (Jp)evs (J.).
> Jisa, i eseiy i o (e

Here, we have to explain the notation used in (£-3). We denote the generators of H!(S,Z)
by Ja. MO(S,J) is the compactified moduli space of holomorphic maps of degree d e
Hy(S,Z) from P! to S. The notation [M(S,d)]s:. means that we always insert the top
Chern class of the obstruction bundle in the same way as in the usual theory of Gromov-
Witten invariants. We note that this moduli space does not correspond to the topological
sigma model coupled to topological gravity. Therefore, we don’t take the equivalence class



of SL(2,C), the automorphism group of P!, and we also don’t consider the degrees of
freedom from moving marked points. Instead, we introduce three fixed marked points
21, 29,23 € P! and define the evaluation maps ev; : HO(S,J) — S by o(z) €5, (p€
Mo(S,d)). We also define the map ev : P! x My(S,d) — S by ev(z,¢) = ¢(z) and the
map 7 : P! x Mo(S,d) — Mo(S,d) as the projection map onto the second factor.

In the case of a local 3-fold Kg, we have a birational map between MO(S,J) and
the usual moduli space of stable maps Mo’g(s, cf), because SL(2,C) is isomorphic to the
position of the three distinguished marked points in P'. Therefore, this definition coincides
with the usual definition of 3-point local Gromov-Witten invariants of Kg, at least in
the case when d # 0 [l. As is well known, the extension of this conjecture to higher
dimensional local Calabi-Yau manifolds is slightly different from the usual theory of local
Gromov-Witten invariants.

In our previous paper [[ll], a crucial point of the construction of the extended Picard-
Fuchs system of Kg is the determination of the classical part of the Yukawa couplings.
Therefore, we carefully look at the d=0 part of the above conjecture. In this case,
© € My(S,0) is just the constant map from P! to S, and it is obvious that M(S,0) = S.
Hence ev; turns out to be the identity map of S. The map ev becomes a projection map
of the second factor of P! x My(S,0), and Rlm.ev*Kg and Rm.ev*Kg turn out to be 0
and Kg respectively. With these considerations, the classical triple intersection number
(Ca, Ch, Ce) = (0, (21)04,(22)O0.(23))0,0 (Cq € Hy(S,Z) is the Poincare dual of J,) is

given by the formula:

Corollary 1.

(Cay Cp, Ce) = / Jalv e (2.2)

s c1(Ks)
At first glance, this formula seems to be ill-defined, because division by ¢;(Kg) is not
defined in H*(S,C). Yet Kg is written in terms of a linear combination of J,’s, and we

can therefore expect the following constraints between classical triple intersection numbers
by the formal reduction c¢;(Kg)/c1(Kg) = 1:

Corollary 2.

(Co, Ch PD(er(Ks))) = / Judb, (2.3)
S
where we denote the Poincare dual of ¢;(Kg) by PD(ci(Kg)) . In the case of Kpe,
HY1(P2,Z) is generated by the hyperplane class H, and the above corollary gives us
H3 1

—= (2.4)

H,H H) = =
(H, H, H) w2 —3H 3

which coincides with the result in [J]. In the next subsection, we try to compute the r. h.
s. of (R.2) with the aid of the localization formula, and we also show that the constraint
(.:3) holds in the results obtained in our previous paper [[.

As another application of the above conjecture, we compute the three point function
of K, that corresponds to the non-rigid curve in the fiber direction. This computation
has already been mentioned in [, but it is important in our fourfold construction that



will be introduced in the next section. Let us first introduce the toric construction of Fs.
Fy is obtained from dividing C*\ (((0,0) x C?) U (C? x (0,0))) by the two C* actions,

(21, T, T3, 24) ~ (T1, T2, piz3, prg) ~ (AT1, AT2, T3, A~ 224). (2.5)

The classical cohomology of F5 is generated by the two Ké&hler forms J, and J, that
correspond to the p and A actions respectively. These Kéhler forms satisfy the following

relations:

J2=2J,J,, J2=0. (2.6)

Then we consider two holomorphic maps with degrees (d,,, d,) = (1,0) and (dy, d,) = (0, 1),
as follows:

v1(s,t) = (a,b,c18 + cot,dys + dat),
wa(s,t) = (a1 + agt,bis + bat, c,0). (2.7)

Note that the fourth entry of o, should be 0 because of the A2 action. By considering the
two C* actions, we can see that moduli space of ¢; and ¢y can be compactified into P! x P3
and P3 respectively. Therefore, the image curve of (; is not rigid in F,, but the image
curve of ¢ is rigid in F5. Next, we extend this construction to Kp,. Kp, is constructed
by adding a fifth variable x5 and extending the two C* actions as follows:

(21,2, 23, T4, T5) ~ (T1, T2, 4T3, pTg, 1 225) ~ (21, A2, 23, A\~ 224, T5). (2.8)

Then the two holomorphic maps in (R.7) can be extended to

P1(s,t) = (a,b,c158 + cot,dys + dat, 0),
P2(s,t) = (a1s + ast,bis + bat, ¢, 0,¢€). (2.9)

We note here that the fifth entry of 31 (s,t) should be 0 by the =2 action. Therefore, we
can conclude that the image curve of ¢ (s, t) is rigid along the non-compact fiber direction,
as in the usual situation in local mirror symmetry. But @2(s,t) has one additional moduli
parameter e, which corresponds to a non-compact fiber direction. This situation is excep-
tional, and so we compute the three point function (O, (21)0y,(22)0,,(23))(0,1) for the
degree (0,1) map @P2(s,t) by the following. If we look back at our conjecture, the appear-
ance of the additional moduli parameter e results in the non-trivially of ¢y, ( ROT.ev* (Kp,)),
and this turns out to be —2.J, in this case. On the other hand, R'm.ev*(KF,) is trivial, so
what remains to be computed is

(07,(21)04,(22)0, (23)>(0,1) - / 1

FFo01) Y evy (Jy)evs (Jy)evs (Jy). (2.10)
2,\Y, vir. u

This formula seems exotic, but luckily, we have a nontrivial virtual fundamental class in
this case. Since the normal bundle N of the image curve in F is generated by x4, it is
isomorphic to Op,(—2J, + J,,). Therefore, p3N is identified with Op1(—2) ® Op,(J,,) and
we have cyop(Rmev*(N)) = J,. Hence, we have obtained the following equality:
(04,(21)0,,(22)0,(23)) (0,1) = / _21J
[M(F2,(0,1))]vir. u

evy (Jv)eva (Jv)evs(Jy)



= - | B3
2 P3
1
= —= 2.11
g (211)
where we used the results that follow from the previous compactification:
M(F,,(0,1)) =P ev;(J,) = H, (H is the hyperplane class of P3). (2.12)

As was suggested in [f], this fractional Gromov-Witten invariant cannot be seen from the
usual recipe of local mirror symmetry, which relies on one double log solution. But we can
detect this invariant by the extended Picard-Fuchs system of Kp, constructed in [[l], since

this system has a triple log solution. This fact is one of the non-trivial advantages of the
extended Picard-Fuchs system.

2.2 Review of the fixed point formula

In this part, we will review the application of the Atiyah-Bott fixed point formula to
torically described surfaces S, where the number of independent curve classes C' € Hy(S,Z)
is allowed to be arbitrary. The Hirzebruch surface F» will be used as an example throughout
this discussion.

So, let S be a toric complex twofold, defined by vertices {vi,...,v,} C Z™ and a
choice of basis {I,...,I""2} C Z" of relations for the v;. That is, if I/ = (I{,...,1%),
then >0 lZ]. v; = 0 for all j. We note, in particular, that smooth toric varieties are

simplicial. Recall (see e.g. [H]) that to each v; there is an associated divisor D; € Hy(S,Z),
and similarly, to each I/ we may associated a curve class C; € Hy(S,7Z). Moreover, the

intersection matrix between these divisors and curves is determined by
D;-Cj=1l. (2.13)

For a more tangible view of S and its curves and divisors, we can use the homogeneous
coordinate ring representation [[f]. This gives an isomorphism

cr—-Z
S —— 2.14
((C*)n—Q ( )
where Z is the Stanley-Reisner ideal, and the action of the jth factor of the quotient
appears as _ _
C*:(x1y..ympy) — (al{ml,...,al%mn). (2.15)
« is the generator of C*. If (z1,...,x,) are coordinates on C", we can then simply describe

the divisors of S by D; = SN {z; = 0}.

In the case of Fy, we have vertices

v = (1,0), 10 = (0,1), 5 = (—=1,2), 4 = (0, —1) (2.16)



The a basis of relations for these is provided by

A 1100
I = — 217
J (F) (—2 01 1) (2.17)

and, as mentioned above, I;; = D; - C;. We also have Z = {z129 = 0} U {z3z4 = 0}.
To apply the localization formula, it is convenient to first compute the equivariant
cohomology ring of S. To construct this, begin with the ordinary cohomology ring

C[Ky,. .., K]

50 == 7(5)

(2.18)

The K; are the Poincare duals of the divisors D;, and P is the ideal of linear relations for
the K;. Z(K;) is the Stanley Reisner ideal, where = has been replaced by K. For the curve
classes C; defined by the basis vectors of relations among the vertices v;, we introduce
Kihler classes J; € H (S, C) such that

/ AL (2.19)

J

The cohomology classes K; and J; are related in a very simple way; namely
K=Y 1FJ (2.20)
k

We are now in position to write down the equivariant cohomology ring of S with respect

to the group action T on S inherited from C"; it is

ClJ1y oy In—2, A1,y An
Z( 1 Tk = i)

H(S,C) = (2.21)

Let {p1,...,pr} be the fixed points of the action 7" on S. Recall that in this situation,
if 7 : pj < S is the inclusion map and N; = N, /g, then the fixed point formula reads

T

W)
/STV_ZeT(Nj)' (2.22)

Jj=1

Above, v € H}(S) ® C[A1,..., ], er(!V;) is the equivariant Euler class of Nj, and if
ET — BT is the classifying bundle of T', then S = S xp ET.

To apply this formula, it is useful to have an algorithm for the computation of ez (1Vj).
This can be readily done, as follows. First write Z (>, IFJx —\;) = {R1(J,\) ... Ro(J, N},
where we are using the shorthand J = (Jy...J,—2),A = (A1...\,). In our setting, each
factor R;(J,\) breaks down as a product of linear factors P;:

Ri(J,\) = ﬁ Pi(J,N). (2.23)
j=1



where []7,n; = 7. Then solving the relations Ri(J,A) = -+ = Rq(J,A) = 0 for J in
terms of A, we find r solutions. Without loss of generality, we use the first solution for the

purpose of this explanation, which can be described by
PHJA) == P(J,\) = 0. (2.24)

Let J(A) denote the solution to this equation. Then the equivariant Euler class of the
normal bundle is given by the formula

a n;

er(M) = [T P{(7(V), A (2.25)

i=1j=2

We obtain similar formulas for each of the other » — 1 solutions.
We now apply this to F5. The intersection matrix I;; tells us that the ordinary coho-

mology ring of F» can be written

C[K17 I 7K4]

H*(F,C) = . 2.26
F2,0) (K3 — K4, K1 + K3+ K4 — Ko, K1 Ko, K3Ky) (2.26)
Thus the equivariant cohomology ring is given as
ClJ1, J2, A1, A
Hi(F,,C) = i T M5 M (2.27)

(J1 =22 = M) (J1 — A2), (J2 — A3) (o — M\g))

One of the solutions of the relations of the Stanley Reisner ideal is J; = 2 4 + A1, Jo = A4
Substituting this into the remaining nonzero terms, we find

eT(N) = ()\2 — 2)\4 — )\1)()\4 — )\3) (2.28)

for the equivariant Euler class of the normal bundle at this fixed point. There are exactly
4 such fixed points using this construction, as expected.

As a test of these calculations, we can compute the intersection numbers between the
2-cycles on Fj via the fixed point theorem. Then we find e.g.

)\2)\4 )\2)\3
C-Cy = / SNy = + +
P T T T um ) (e — 20— A1) (s — A (Mg — 20 — A)
(24 + A1)\ (2X3 + A1) A3

= 17
M= A3)( A1 +20 = XN2) (A3 —A) (A1 + 23 — N2)

the correct intersection number.

We then give the general definition, based on our conjecture in the previous section:

Definition 1. Let S be a toric surface with torus action T, and let {p1,...,p,} be the
isolated fized points of T on S. Let Cy,Cy,C. € Ho(S,7Z), and denote the canonical bundle
of S by Kg. Then the triple intersection numbers of S are defined by the formula

"5 ()it (Jp) i (e
R e 220

Here ij : pj — S is the inclusion, N; is the normal bundle of p; in S and er(E) denotes
the equivariant Euler class of the bundle E. Also the J; satisfy fCi Jj = ;5.



This definition is a precise version of the heuristic formula for triple intersection numbers
derived earlier:

(Ca,Cy, C.) = / JaJbJe (2.30)

s c1(Ks)

While Definition 1 is mathematically rigorous, in practice it can be cumbersome to write
out the sometimes quite complicated formulas of the torus weights. As such, we can make
use of the formula (R.3() to make a heuristic calculation of the intersection numbers. This
is in fact the strategy we will employ when computing intersection numbers for the del
Pezzo surface below.

2.3 Examples

Example 1. Let’s first use the definition on a rather simple case, namely Fy = P! x P!,
From section 2.1, we have that the equivariant cohomology ring of Fy with respect to the
standard T action is

(C[Jl,JQ,)\l, . ,)\4]

Hi(Fo. €)= (1 = M) (J1 = A2), (2 = Ag) (o — )

(2.31)

Note that there are four fixed points p1,...,ps corresponding to the four corners of the
square P! x P'. Then we can use the above expression for the equivariant cohomology to
find the inverse images of the two cohomology classes Ji, J2, as well as of the canonical
bundle. We write out one of the expressions we get by using the above definition:

A2\ N A2\

s — M) — M) (—2M1 — 203) (= A3) O — M) (=2 — 2h)
A3\ N A3y

A3 — )\4)(—)\1 + )\2)(—2)\2 — 2)\3) ()\4 — )\3)(—)\1 + )\2)(—2)\2 — 2)\4) '

(C1,C1,C5) =

(2.32)

+
(
There are, naturally, three others for the other triple intersection numbers. Then all we

need to do is set \; = A3 and we immediately have that

xr—2 2—=x
, (C,Cy,C5) =

<Clacl7cl> = 7 <Cl701702> = _27 <01702702> = (233)

~1 8

where x is an expression involving the torus weights, which we interpret here as a moduli

parameter on the intersection numbers. These are exactly the four triple intersection
numbers from [f, fl. *

Example 2. Next, consider Fy. Here we will find that we must make a nontrivial choice
of torus weights in order to reproduce the expected triple intersection numbers [[[]. The

origin of this complication lies in the fact that the canonical bundle over F; does not

involve a cohomology class from the base curve. In [[], this ambiguity turned up as a
moduli parameter for the intersection numbers.

!The extended Picard-Fuchs system of Kr, indeed has one moduli parameter which agrees with the
above results, but it was not mentioned in []



As above, we find three of the four triple intersection numbers on F5. Note that here,
the values computed are independent of the choice of torus weights, in contrast to the Fjy

case.
1
<Cl,01701> = _17 <Cl701702> = _57 <Cl702702> = 0. (234)

Again, these agree with []. However, for the remaining intersection number we obtain

1 )\1)\% + M A3 + )\1)\421 + 2)\3)\3 + 2)\%)\4
Cy.Cy. Cy) = = 2.35
< 22 2> 2 (2)\3 + )\1)(2)\4 + )\1))\2 ( )

At first, this result seems to mean that there exists one moduli parameter corresponding
to (Co, Cy, Co). However, in []I[], we have found that this number should be set to zero from
considering the behavior of the triple log solution of the extended Picard-Fuchs system [i].
We think that this phenomena is deeply connected with the exceptional behavior of the
curve in Kp, that is nonrigid in the noncompact direction.

Example 3. We can also carry out the calculation for Fj. The equivariant cohomology
ring is in this case
C[Jh JQa )‘17 v 7)‘4]

HiC) = )t — o — m2). (2 — ma) (T — ) (2.36)

From [[lll, it was found that there is in fact a moduli parameter in the triple intersection
numbers for this case which leaves the instanton expansion invariant. Using the localiza-
tion calculation, this problem shows up as an indeterminacy of the intersection numbers.
However, what we find is that by fixing one of the four intersection numbers, the other

three are determined automatically. We fix (Cy,Cq,C1) = x by choosing

Ao — —)\1(3)\1 + 24 + 12201 + 61‘)\4)
3 (1+32) (20 + M)

, T F —é. (2.37)
Then this choice gives the remaining three intersection numbers

(Ch,C1,Cq) = =1 =2z, (C1,C5,Co) =1+ 4z, (Cy,Co,Co) = —2 — 8. (2.38)
These are again as expected, including the moduli parameter [f].

Example 4. Finally, we compute triple intersection numbers for the del Pezzo surface dPs.
In this case, the fixed-point computation is rather complicated, and we therefore present an
alternative (simplified) way of determining the classical triple intersection numbers. First,
we restate the notation of the previous paper [fl] for the classical cohomology ring of dPs.

It is generated by three Kahler forms Ji, Jo, J3 and obeys the 5 relations:

p1 = (J1 — J2)(J1 — J3), p2 = Jo(Jo + J3 — J1), p3 = J3(Jo + J3 — J1),
pa = Jo(J1 — J3), ps = J3(J1 — Ja). (2.39)

,10,



As in the previous examples, the J; are chosen such that if Cy, Co, C3 is a basis of HydP»,Z),
then

C;

With this notation, e(N) := ¢;(Kyp,) is given by —(J; + J2+J3), and the triple intersection
numbers are given by the formula:

(Cy G C) = / (2.41)

Jodo . __/ JoJy e
ap, c1(Kap,)

AP, J1+Jo+ J3

Of course, the above expression is formal, but we can read off from this equation the
relations between triple intersection numbers:

(Ch, . Ca) + (Ca, Gy, Ca) + (C, Gy, Ci) = — /d e (2.42)
2
Notice that the r.h.s is just the well-defined classical intersection number of dP». Since
the classical triple intersection numbers are symmetric in a, b, ¢, we have 10 independent
numbers. But (R.49) imposes 6 independent relations between these numbers. As a result,
we obtain 4 moduli parameters in the classical triple intersection numbers, which agree
with the 4 moduli parameters found in the previous paper [i.

(C,C1,C1) ==143x+3z+y+w, (Co,CoCo)=—y, (C3,C3,C3) = —w,
(C1,C1,Cq) = —z =2z —y, (C1,C1,C3) = —x — 2z —w,

(C1,C2,Co) =z 4y, (C1,03,C3) =2+ w,

(C2,C5,C3) = —x, (C2,03,C3) = —2, (C1,02,C3) =x+2—1. (2.43)

If we set z = 2, w = y, these results reduce to the triple intersection numbers used in [

Remark 1. In the case of Kg,, Kp, and Kgp,, the extended Picard-Fuchs system found
from the instanton part of the prepotential has the same number of moduli parameters which
cannot be fived by the constraints (B.3), but the extended Picard-Fuchs system of Kr, has
no moduli. As we have mentioned, this fact seems to be related to the existence of a (0,1)
curve in Kp, which is not rigid along the fiber direction.

3. The computational strategy via local fourfold

In this section, we give a schematic presentation of the procedure we will be using to
determine the prepotential. Let X be a noncompact Calabi-Yau threefold, and let F
denote the prepotential for X, which we want to define by using mirror symmetry. For all
cases considered in this paper, X is either Kg, the canonical bundle over a complex surface
S, or dim Hy(X,Z) = 0.

First, let us suppose that X = Kg. Then we compute F in the following steps:

1) Take the canonical bundle over the projective closure of Kg, X = O(K) — P(Og &
Kg).

— 11 —



2) Let Y be the mirror of X , and compute the fourpoint functions of Y using the
extended Picard-Fuchs system.

3) Using the mirror map, convert the fourpoint functions of Y into fourpoint functions
of X.

4) Recover F from the fourpoint functions of X in the large fiber limit.

At this point, we include a brief discussion as to why we expect to be able to derive
F from the above steps. After all, the resulting manifolds Y and X are still noncompact,
and we may therefore find ourselves in the same situation as in the original noncompact
Kg case. The main point, however, is that while Y is a noncompact fourfold, it contains
the compact threefold P(Og @ Kg) as a submanifold. Then, as in the considerations of
B, they found that they were able to derive Picard-Fuchs equations for spaces like K,
but that the resulting differential systems corresponded to the underlying compact twofold
S. Similarly, with our procedure we expect to be able to derive accurately all information
corresponding to the underlying compact threefold P(Og @ Kg) from Y.

We now give a more detailed explanation of these steps. Let {Ji,...,J;,} be a basis
of H}(X,C). Take the projective closure X = P(Ogs @ Kg) of X, and let Jr be a Kihler
class of X such that {Ji,...,Jm, Jr} is a basis of H!(X,C). We consider the canonical
bundle over X: X = K 1. Since X is a Calabi-Yau fourfold, the idea is then to compute F
as a limit of the fourpoint functions Cjjz; of X. At this stage, we clarify the geometrical
meaning of the fourpoint functions Cjjz; of the local 4-fold X=K . This can be done by
a direct generalization of our conjecture given in the previous section.

Conjecture 2. The fourpoint function Ciji is the fourpoint function (O, (21)Oy;(22) X
O, (23)O0,(z4))0 of the topological sigma model on Kg without coupling to topological
gravity:

Cijkl = Z q(d7dF) <OJ1 (Zl)OJj (ZQ)OJk (Z3)OJ1 (Z4)>07(dde)

d
1 *
— (cf,dp)/ ctOP(R T+€V KX') IV ev (T evs (J £(7 3.1
= q ev 3 )EV: eV ev s .
% o X, top B ) 1P el ), (3:)

where the notation is the same as that in Conjecture 1.

We compute the Cjji; by using mirror symmetry. Let Y be the Hori-Vafa mirror to X ,
and take {z1,...,2m,2F} to be complex structure coordinates for f/, where zp is mirror
to the complexified Kéhler coordinate ¢y satisfying R(tp) = Jp. We first determine the
fourpoint functions Y75 of Y. Let {Dy,..., D, Dr} be the (local) Picard-Fuchs system
of differential operators for period integrals of Y. The last operator Dy is distinguished,
as we take it to correspond to the complex structure variable zp.

Now, in computing fourpoint functions of Y, we note that the system {D1,...,D,,Dr}
is not sufficient. The reason for this is that these operators really correspond to the mirror
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of the compact threefold X, and therefore we need more relations to compute the Y.
Our solution is to use an extended Picard-Fuchs system, as considered in [fl].
In order to fix a choice of extended Picard-Fuchs system, we reason as follows. From the

above conjecture, classical quadruple intersection numbers on X are given by the formula:

JaIvJedd
Ca, Ch, Ce, C, :/ Sl
{Car G e G x a(Kx)
where C, € Ho(X,Z) and c; is the first Chern class. Since ¢1(Kg) = —2JF, we can easily
see,

(3.2)

1
<Ca,CbaCCaCF> = _5/ JanJC, (33)
X

with no ambiguity. However, if all of the J,,.Jy,J.,J; are induced from H(S,7Z),
o %ﬁ;‘]‘i cannot be computed, and we therefore have free moduli parameters. In this

paper, we set all of these free moduli parameters to 0, i.e., we set

(Cy iy oy C) = / Jododeda _,

_— ) 3.4
5 —2JF (34)

if all of J,, Jp, Je, Jg are induced from H'1(S,Z). This choice is geometrically natural since
JoJpJ. = 0 in H*(X.C) if all of J,, Jy, J. are induced from H!(S,Z); furthermore, it is
compatible with our choice of moduli in the F5 case.

The formulas (B:3) and (B4) completely fix the fractional intersection theory of X. Now
consider the Picard-Fuchs operators D; to be formal polynomials in the noncommutative
variables z;,0;, where 0; = z;0/0z;, and define limiting relations by the formula R; =
lim, o D;. Then it is easy to show that the intersection theory defined by eqn.(B.3) and
eqn. (B4) coincides with that of the commutative ring

A Cl01,...,0m,0F]
> (X,C) = Y . 3.5
e:vt( ) <R1,,Rn,9FRF> ( )
Hence, we should choose {Dy,...,D,,0rDr} as our extended Picard-Fuchs system on Y.

With this extended system in hand, we can solve for the four point functions, but
we need to make one more assumption. We assume the existence of n point functions,
n =1...5, which are symmetric tensors satisfying

(i) Griffiths transversality: the n point functions vanish for n < 3;
(ii) integrability: 2YU*™ = 0,Y 1, + 0;Yigim + Ok Yijim + 01Yijkm + OmYijni,

(iii) relations among the n point functions are determined by the extended Picard-Fuchs
system.

We give here a brief justification for the existence of these. This is not a proof,
but is merely meant to indicate why one might expect to find n point functions with
the above properties. The key observation is that the extended Picard-Fuchs system
{D1,...,D,,0rDp} is actually the (ordinary) Picard-Fuchs system of the toric variety
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X = O(-1K)® O(K) — P(Os & Os & Kg), where we take a section of the positive
bundle O(—3K) (as was done in [f]). To see this, consider the noncompact Calabi-Yau
sixfold Xo = O(3K)® O(K) — P(Os & Og & Kg), and let Y, be the mirror of Xy, in the
sense of [i]l. Then we have Y = {(y1,...,y5) € (C*)°: f(21...,2m,2r,y;) = 0} for some
f, and this allows us to define a meromorphic (4,0) form on Ys as

0, =R ( T,
2 esf—o H —e ) (3.6)

i=1 “*

We recall briefly the original construction of Hori-Vafa [[f]. Our computation of Y, may
be confusing, since in the process of taking the mirror manifold, the dimension has been
reduced by 2. However, this was in fact a peculiarity of their original construction. For
example, the mirror of O(—1) @ O(—1) — P! was described in the earlier works of mirror
symmetry as the hypersurface fi = 1 + y1 + y2 + zy1y2 = 0, which is complex dimension
1. Only in slightly more recent literature do we find this equation modified to fo =
uv + 1 4+ y1 + y2 + zy1y2 = 0, and this is done mainly with the motivation of keeping
the dimensions consistent on both sides of mirror symmetry. However, the period integrals
corresponding to f; = 0 and fo = 0 are the same, so we are free to consider Ys as a complex
fourfold.

Then, again using [ff], we can produce a (4,0) form on Yi, the mirror to X1, by the
formula € = 0. The derivative converts noncompact period integrals into compact
ones. Recall that the result of Hori-Vafa [ff] the equation

0
Hcompact = annonfcompact- (37)

For example, this formula is well known in terms of the relationship between the period
integrals of O(—5) — P* and the period integrals of the quintic, which is a zero section of
the bundle O(5) — P*. It is then straightforward to check that the period integrals given
by Ql are annihilated by the extended Picard-Fuchs system {D; ...D,,0rDr}. Thus, we
have found a meromorphic form for Y7, which is related to the n point functions as

yiin :/ Ql /\82‘1 ...0

i Q. (3.8)
Y1

We then move forward under the assumption of the existence of n point functions. We
are now able to solve for the four point functions Yj;; of Y completely by imposing the
condition that constant part of Yj;; should coincide with (C;, Cj, Cy, Cp). Up to this point,
we have completed steps 1) and 2) of the outline. Next, we transform the functions Y
to the A model via the inverse mirror map. Recall that the mirror map is given by the
basis {t1, ..., tm,tr} of logarithmic solutions of the Picard-Fuchs system; with this, and the
knowledge that the Yz, are rank 4 tensors, we can compute the Cjjz;, which are fourpoint
functions for X. The only thing remaining is to compute F in the threefold limit, and from
B, this is done via the large fiber limit lim, , oo Cijkr- We now clarify the relationship
between the three point functions of Kx and lim;, . _o Cjjrr. Taking the large fiber limit
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corresponds to picking up the dr = 0 part of the fourpoint function Cj;ir. Therefore, we
are led to consider

1 *
(dfo)/ Ctop (I v KX)ev* Jevs (J:)evi(J)evi (Jg). 3.9
%;q o (ST o B Eey) 1RV el ) 39

We note that ¢ € Mo (X, (d,0)) is nothing but the constant map along the fiber direction.
Therefore, we can regard evj(Jp) as Jp. We can also see that Ky is trivial along the X
direction, and we have

Ctop(RM et Kg) =1, crop(ROmeev* Kg) = 1 (Kg) = —2Jp. (3.10)

Hence we obtain the following equality:

1 *
(CZ,O)/ ctOp(R Tr*ev KX) * J % J * J * J
E q ev i )€ev ev ev
d (Mo(X (F0))]uir. Ctop(ROTe0* K g) e e tenitUr)

I, 1
=> ¢ / et () ews () et () Jr
d [Mo(X,(d,0)]vir. —2JF

]vi'n

1 1, *
Sy [ e (e (). )
J‘ [MO(Xv(d7O))

by formal reduction. Notice that if we assume that J;, Jj, Ji are all induced from
HYY(X,7Z), the constant term of (B.11]) vanishes. Therefore, constant term of the last line of
(B-T1)) vanishes. At this stage, we assume that image curve C' := (PP!) is rigid along the
fiber direction of X = P(Og @ Kg). Since C is contained in S, the normal bundle Newx is
given as follows:

NC\X ZNC\SGBKS@OP(U. (3.12)

Under the above assumption, we have to insert ciop(R'mev*(Kg ® Op(1))) in reducing
[Mo(X, (d,0))]uir. into [Mo(S, d)]uir. since ciop(ROmeev*(Kg©Op(1))) = 1. Moreover, since
external operator insertions come only from the cohomology class of .S, we can neglect the
®Op(1) part from the topological selection rule. Therefore, we can rewrite the last line of
(B.11]) as follows:

1 7 * * *
S [ eten e )
J#O [MO (Xv(dvo))]vi%

1 1 * * * *
= —§Zq(d’0) /_  Ciop(R'meev® (Kg))evi (Ji)evs (J;)evs(Ji).  (3.13)
e [MO(Syd)]v'L'ﬂ

Since crop(ROmiev*(Kg)) = 1, we can see that the last line of (B.1J) coincides with the
formula (-2) up to the factor —% (neglecting constant terms). Therefore, we have obtained
the following equation under the assumption that all the image curves are rigid along the
fiber direction of X = P(Og & Kg):

lim Ciij = _7182({9]3]6.7:@”“ (314)

tp——0o0
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Then equation (B.14) gives a defining equation for the prepotential , up to polynomial
terms! We emphasize that while the usual local mirror symmetry Picard-Fuchs system
is only able to identify a single linear combination of prepotential derivatives, the above
formula completely fixes F up to the polynomial ambiguity. This is particularly handy
when the number of Kéhler parameters of X = Kg becomes large.

Of course, if S = Fy, the above assumption breaks down for the (0, 1) curve mentioned
in the previous section. We discuss here this situation in detail. The toric construction of
P(O ® Ok, ) is obtained by adding a sixth variable z¢ to the toric construction of Kr, in
the previous section.

—2 —2
(w1, 22,23, T4, T5,26) ~ (21, T, U3, 424, 1~ T5,T6) ~ (A1, AT2, T3, N "4, T5, T¢)

~ (@1, 32, T3, T4, VTs5, VT6). (3.15)

Let Jy, Jy, Jw be the Kahler forms associated with the actions p, A, v respectively. These
forms are generators of the classical cohomology ring of P(O @ OKFQ)- Relations of the
classical cohomology ring are given by,

J2 =20y dy, JE=0, J2=2JyJ,. (3.16)

This space is a P! fibration of Fy, but it can also be regarded as an F; fibration of P'. We
denote the F5 fiber whose cohomology ring is generated by J, and J,, by sz . We have
relations:

J2=0, J2=2J,J,. (3.17)

Then degree ((0,1),0) map of P(O & Oy, ) is given as follows:
o(s,t) = (a1s + agt,bis + bat, ¢, 0, ¢, f). (3.18)

Therefore, we can see that moduli space of ¢ is compactified into P? x P! by considering
three C* action. The second P! is Poincare dual of &, in FQf . With this setting, we compute
(01,(21)0,(2:)0,(23) 015 (24)) ((0,1),0)- In the same way as the first part of the previous
computation, we can derive,

<OJU(Z1)OJU(zZ)OJv(Zg)OJF(Z4)>((071)7O) =

1
=-3 / evy (Jy)evs (Jy)evs (Jy). (3.19)
[Mo(P(Ok ) ©0),((0,1),0))] i

The obstructed normal bundle of the image curve is generated by x4 and it is isomorphic
to Op,(—2J, + J,,). This generates the same virtual fundamental class J,, as the discussion
in the previous section. By using the above compactification of the moduli space, we can
proceed as follows:

(0, (21)0,,(22) 0, (23) Oy (24)) ((0,1),0)

1
__1 /_ Tuevt (T evs(Ju)evs (J,)
2 J¥Eo(®(Oxc,, ©0),((0,1),0))
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1
e
2 P3 Pl

1
:__/ T, (3.20)
2 Jm

where H is the hyperplane class of P3. At this stage, we have to remember the fact that
this P! is identified with PD(J,) in sz . Hence we have,

1 1
(01,(21)0,(22)01,(23) Oy (24)) ((0,1),0) = —3 /Pl Ju=—3 /Ff Jo =0. (3.21)
2

From this result, we conclude that this curve cannot be detected from the local fourfold
computation.

Next, suppose that dim Hy(X,7Z) = 0. First we discuss dim Ho(X,Z) = 1 cases. In this
paper, we treat X = P(O®0O(—1)®0(-1)),P(O®O®O(—2)) which are compactifications
of X = O(-1) @ O(~1) — P, O ® O(-2) — P'. Here, we denote by H the hyperplane
class of the base P!. We also denote c;(Op(1)), which is a generator of the cohomology
class of fiber direction, by Jr. Since ¢;(K g) = —3Jp, we can compute the large fiber limit
of Cypmr in the same way as the first half of the computation of the X = Kg case:

1 3 @0 / evt (H )evs (H)evs (H) (3.22)

3= (30X (d.0))]ir

The remaining computations depend on the structure of the fibers; we discuss the X =
P(O & O(—1) & O(—1)) case first. In this case, the image curve is rigid in the fiber
direction, and we only have to insert cop(meev*(O(—1) ® O(—1))) to reduce My(X, (d,0))
into Mo(P!,d). Therefore, we obtain the following formula:

lim Crmagr = —5 ¢ / , v (H)evs (H)evs (H)
tF*)OO d>0 MO(X (dyo))]vir
= > / cuop(mes” (O(=1) & O(=))evi (H)ews (H)ec (1)
d>0 Mo (P'.d
1 gq
- _-._1 3.23
3T (323)

as is well known from the result of Aspinwall and Morrison.

Next, we discuss the X = P(O & O ® O(—2)) case. In this case, the image curve is not
rigid in the fiber direction, and M(X, (d,0)) turns out to be P! x My(P!,d), where the
left P! is contained in the fiber P2 of X. Therefore, we have to insert ciop(meev* (O(—2) ®
Op(1))) = Z?dol cj(meev* (O(—Q)))J%dil*j in order to reduce My(X,(d,0)) into P! x
My(P!,d). With these considerations, we obtain the following result:

lim Crmagr = —5 3¢ / , v (H)evs (H)ev; (H)
tp—o00 d>0 [Mo(X,(d,0))]wvir.
. Z / cad—2(meev™(O(=2))) - Jp - evi(H)evs (H)evs (H)
d>0 ]P’lXM()(]Pl d
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Figure 1: Toric diagram of the partial compactification on O @ O(—2) — P*.

= __Z /M cad—2(meev™(O(=2)))evi (H)evs (H)ev;(H)

d>0 o(Ph,d)

L q
- _Z. 3.24
3 1—¢q’ ( )
which follows from the localization computation.
We then turn to the dim Ho(X,Z) > 1 case. Here, we briefly discuss the schematic
procedure needed for the mirror computation. In this case, we must add the following steps
to those used for Kg:

0) Compactify the moduli space of all curve classes C' such that No/x = O @ O(-2),
%) Flop the resulting space to a canonical bundle model,
3%) Reverse the flop transition of step %,

3%) Decompactify the compactified moduli spaces of step 0.

Here we are assuming that the ‘compactified” model we get after step 0 admits a flop to
a canonical bundle type space. This certainly holds true in all the examples we consider, and
probably has a reasonably broad range of validity. Then the only step in the above which
is not self-explanatory is number 0, since there are clearly a variety of compactifications
available, and the result varies demonstrably with the choice. Our approach is to use a
compactification such that the outcome is consistent with topological vertex calculations
[H]. This compactification was first considered in ], and the basic example of it is depicted
in figure [l

We mention here one extra subtlety which comes along with the use of this compactifi-
cation scheme in computing the prepotential. We are using this compactification because,
as mentioned, we cannot see the presence of —2 curves from usual mirror symmetry cal-
culations. However, using this compactification, we actually find the result that the —2
curves are overcounted by a factor of 2. The reason for this is as follows. For any toric
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graph containing figure [I| as a subgraph, the instanton number of the relevant curve comes
out to be —2. This is because figure [l| is the graph of K, and the Gromov-Witten invari-
ant of each curve of Kp, is —2. Therefore, at the last step we should divide the resulting
Gromov-Witten invariant for the compactified curves by 2.

Then, by working through steps 0-4 for the dim H4(X,Z) = 0 case, we are able to
calculate the correct prepotential in a number of examples. In addition, we carry out the
computation for one example whose prepotential has not been worked out elsewhere, and
find a result which might have been guessed from the findings of [J].

4. Local Calabi-Yau fourfolds

We now turn our attention to the mirror symmetry construction of the prepotential for
noncompact Calabi-Yau threefolds.

4.1 Fourfold compactifications of local threefolds

We begin this section by offering some motivation on the utility of local Calabi-Yau four-
folds. We will demonstrate that local fourfolds are one of the more natural objects one
might consider in cases where ordinary local mirror symmetry for threefolds breaks down.
To this end, consider the space X = O®O(—2) — PL. This can be realized as a symplectic
quotient

X = {(2’1,. .. 72:4) eC*-Z: —2‘2’1’2 + ’22‘2 + ‘2’3’2 = T}/Sl. (4.1)

Here Z = {23 = 23 = 0} is the exceptional locus, r € RT and

Sti(zr, . zs) — (672021, €92, €23, 24), 0 € St (4.2)

Note that the vector (—2 1 1 0) completely specifies the geometry of X.

The usual constructions of local mirror symmetry [[T] fail for this case, because the
Picard-Fuchs operator is only of order 2, and its solutions are spanned by 1,¢ where ¢ is
the mirror map. This constitutes a failure of mirror symmetry exactly because there is one
holomorphic curve in X, and this curve is not counted, as we would like. Recently, one rem-
edy for this was offered in [], where an extended Picard-Fuchs operator was constructed.
Here, we will take a different approach.

One of the reasons for the problem of the uncounted curve is that P! < X has a non-
compact deformation space C. Hence, we should be able to recover the curve information
by compactifying this deformation space; the simplest choice for such an operation is the
projective closure X, which is the compact toric manifold given by the vectors

—-21100
. (4.3)
1 0011
We have X = P(O @ O @ O(-2)) — P! Notice that this is a P? fibration over X.

Unfortunately, this new space is not Calabi-Yau, but there is a natural local CY fourfold
associated to it:

Kg = {22’ + |22 + 25> = r,=3Jz20* + |21 * + |2a|* + |25]* = rp} /(1) (4.4)
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This is, of course, just the local CY given by
0 21100
(4.5)
-3 10011
and is the canonical bundle over X. Now, recall [[LI][fl] that local mirror symmetry on a
space X is incomplete (i.e., the prepotential cannot be reconstructed from solutions of the
PF operators) exactly when dim Hy(X) # dim Hy(X). In the case of O @ O(—2) — P!,
there are no four cycles at all, which translates into a lack of predictive power of the
instanton expansion via mirror symmetry. The new space Ky has two four cycles, and
moreover the deformation space of the base curve has been compactified, which indicates
that this geometry should have the instanton numbers that were lacking on X.
On any space X = Kg, the canonical bundle over a surface .S, we can give a general
description of this procedure via charge vectors. First, write the charge vectors of X
=i o
: : (4.6)
-2 n—2 -2
L A £
where we take the convention that [§ > 0 Vi. This means that, if [C;] is the curve class

associated to the vector I%, then the canonical bundle of S is >_. I§[C;]. Then we define the
associated noncompact Calabi-Yau fourfold to be

0 -5 1 ... 1Lo
P Do (4.7)
0 g2 2...1m20
-2 1 0 ... 0 L

which is nothing but the canonical bundle over P(Ogs & Kg). Note that, while we can

associate a noncompact fourfold to any geometry of type Kg, we only expect that the

Picard-Fuchs system on the fourfold has new information about curves in S if dim Hy(S) #
We now move on to discuss the methods of analyzing local fourfold geometries.

4.2 Periods of local fourfolds

Here, we will briefly describe relevant geometric quantities of fourfolds in terms of Picard-
Fuchs solutions. See [§ for a similar discussion for compact fourfolds.

We assume that we begin with a noncompact Calabi-Yau threefold X, and let B?
be the projective closure of Xjy. Then the fourfolds we will use are all of the type X =
Kps, where Kps is the canonical bundle over B3. This is specified by a set of vertices
{v1,...,vn} C Z* Choose a basis of relation vectors {I!,... ™} satisfying >, [Fvy, = 0 Vi,
and let C1, ..., C), be the corresponding basis of Ha(X,Z). Then we take {J1,...,J,} as a
basis of HY1(X,C), where fC¢ Jj = d;j. Next, take D1, ..., Dy to be the basis of Hy(X,Z)

corresponding to the columns of the intersection matrix (i.e. D; N C; = lg ). Note that
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while every row vector of the charge matrix gives us a 2 cycle, not every column of the
charge matrix corresponds to a compact 4 cycle. A particular column will give a compact
four cycle if its corresponding vertex is an interior point of the convex hull of {vy,... v, }.
We can then define a dual basis of four forms ) ik cZij A Ji by the equation

/ ch)ij AJp = 0ap. (4.8)
D

@ gk

Finally, note that there is a single 6 form which satisfies

/B3 Zaiiji VAN Jj ANJ, =1. (4.9)

ijk
Now let Y be the mirror of X. Then using the lattice vectors {I',...,I™}, we can
immediately write down a Picard-Fuchs system of differential operators {D;,...,D;} such

that the solution space of the differential equations is the same as the period integrals of
Y. The generating function of solutions for this system is

w=YTI(ra+X H(ni + i)~ 2" (4.10)

n>0 j

Then, using the above bases of cohomology on X, we can describe the solution space of

{D1,...,D;} as follows. Let I;; = d),0,,w|,=0. The solution space becomes
<1,H1, U P N Lo PR L5 1 P Zdiﬂ’kmjk). (4.11)
j7k .]7k /[:7j7k

Here, the cflk are the same as in the X case, and
dk = / Ji A Jj Ay (4.12)
B3

With this data, we can construct the fourpoint functions of Y. Let % be the intersec-
tion matrix of four cycles on X, n® = D, - Dy. Also, set II;, = ¢, and ijk c]lkl_[jk = W,.
Then the threepoint functions are defined by

Yogy = 01, 01, Wy (4.13)

Note that while the solutions W, of the Picard-Fuchs system have double logarithmic
singularities, the threepoint functions are holomorphic in z. The fourpoint functions are
then

Ya,@wé = Z Yaﬁanabyrbwéa (4'14)
a,b

and these are also holomorphic in z.

— 21 —



Finally, there is one more fact about these fourpoint functions which we will make heavy
use of [§]. Note that for the compactification B> — X, with Xy the given noncompact
Calabi-Yau threefold, the number of Kahler parameters has increased by 1. Let £ ipe, = i,
be the Kihler parameter corresponding to the compactification B®> — Xy. With the above
conventions, we therefore have that {Ci,...,C,,—1} is a basis of Ha(Xy,Z). If we take
Cinst- to be the instanton part of the Yukawa couplings for Xg, then we can compute the

abc
C7st- from the Yygym in the following limit:

. Jm inst.
hm Yaﬁ,ym = <m) . aBy s (415)

tm——00

which follows from the result in section . In what follows, our main strategy will be to
compute the fourpoint functions for X and then derive the threepoint functions on Xj in
the above limit. Note that we must perform the above limit in A model coordinates, i.e.
the coordinates on the complexified Kéahler moduli space of X.

5. Some examples

5.1 Application to local P!

We will here apply the canonical bundle over the projective completion technique to a local
P! with normal bundle either O(—1) @ O(—1) or O & O(—-2). In both cases, we find that
the resulting noncompact fourfold contains the instanton data in a natural way.

Example 5. First, we note in greater detail why it is that one might see missing instanton
information in the noncompact fourfold geometry. Consider X = O(—1) @ O(-1) — P!,
which is determined by the vector <1 1-1 —1). We associate to X the noncompact
fourfold K g, described by the vectors

<0 11—1—1()). 51)
-3001 11
This is the canonical bundle over P(O @ O(—1)® O(—1)) — PL. There is a nice graphical
representation of this procedure, as illustrated in figure fl. By looking at this picture, we
can gain an understanding about what the projective closure does for us computationally.
Recall [[f that on the geometry O(—1) & O(—1) — P!, we are supposed to be able to
recover the instanton data by computing the ‘volume of the noncompact 4-cycle dual to
the PY’. This is made into a sensible calculation in that paper by introducing a cutoff
parameter on this 4-cycle and performing the regulated integral. Yet, from our picture
here, we can see that the noncompact 4-cycle is given a finite volume; and moreover, we
can find that volume simply by analyzing the period integrals on the mirror of K. We
can then recover the data originally coming from O(—1) @ O(—1) — P! by taking the
large fiber limit on the relevant integrals.

With that being said, we begin the computation. Denote the mirror of K¢ by Y.
Then Y is a CY fourfold which can be described by the equation

Y = {wv + 1+ y2 + 2194y5/y2 + ya + ys5 + 22/ (yays) = 0} (5.2)
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Figure 2: The projective closure procedure. The external lines on the K picture represent the
canonical bundle direction.

where u,v € C and y; € C*.? The Picard-Fuchs differential operators for period integrals
on Y are

D = 9% — Zl(—91 + 92)(—91 + 92) (53)
DQ = 92(92 — 91)2 — 2’2(—392)(—392 — 1)(—392 — 2).
The Poincare polynomial is

(1-)(1—#)
-1

=t 422 + 2t +1 (5.4)

which gives exactly the right number of 0,2,4 and 6 cycles, as is clear from figure f. Corre-
sponding to the two two cycles in the A model geometry, there are two logarithmic solutions
t1,to of the system (p.3), two double logarithmic ones for the four cycles, W; and Ws, and
of course we have a solution from the six cycle.

Consider now the extended system of differential operators {Dj,602D5}. The Poincare
polynomial of {Dy,62Ds} is indeed such that we should expect its solutions to be of the
type usually associated to a compact Calabi-Yau fourfold. We let M be a fourfold with
period integrals coincident with the solutions of {D1,02D5}. As explained in section 3, we
can take M as the mirror of O(Hp) @& (—3Hp) - P(O® O & O(—1)® O(—1)), where Hp
is the class dual to the fiber curve Cr = C5. Set

Y'(Zb)n = /MQ/\vgzlngZQQ’ m+4n==k, k¢€ {4,5}, (55)

(k)

where  is the (4,0) form on M and V is the connection on the complex structure moduli
space of M. We can then use the extended Picard-Fuchs equations to derive relations

2Note that this mirror manifold is slightly different from that used in section 3. While the Picard-Fuchs
operators will be the same, this description has a factor of uwv in front for dimensional reasons.
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among the Y(T)" To see this in the present case, note that we have exactly four equations

01D f =0, 03D1f =0,
010:D1f =0, 0:Dyf =0, (5.6)

and these imply the following relations for four point functions:

(= YGE +2vy - )z1+Y4):0

(- Y3 +2v3 - Y(4 Nz +YE) =0 (5.7)

(Y@ +2Y5 - Y3)a + Y4) =0 (5.8)
27V} 2 + Y(%f; — 2V} + Y = 0. (5.9)

Solving these relations completely determines the Y(m)", up to the overall multiplicative
function S = Y(%l. We can then use the PF system again (this time with one higher power
of derivatives) to derive a system of partial differential equations for S. To see how this
works, note that the assumption of the existence of M made above implies a relationship
between four point and five point functions:

(mO1Y " 4 nboY ). (5.10)

Y5y = (4) (4)

1
5
Then one could use this formula, together with a degree 5 relation (for example, §202D; f =
0) in order to write down partial differential equations for S. If we solve these partial
differential equations in our present case, the result is S~' = A =1+ 542y + 542129 +
72922 — 14582123 + 7292222. We note that A s is exactly the discriminant locus of the
hypersurface in eq.(f.). This turns out to be the case for all the examples we consider.
The overall normalization of the four point functions are determined from the result
in section [J. We can read off the relations of classical cohomology ring of X from (f-J) as
follows:
k2 =0, ko(ky —k1)? =0. (5.11)

Then we obtain,

_ [ k2 Rk 1
(C2,Cy, 3, Cy) —/ 35, 3 (C1,Co,Co,Co) = /X T
kiks K3k
(C1,C1,Cs,C) = / 13]{22 =0, (C1,C1,C1,Cs) = / 13]:2 =0,
X = X —
<Claclacl7cl> = U, (512)

So, back to the calculation. With the above, we have completely solved for the four

point functions:

oa__2 1 13_ 2 1272 +27212 0 2 2Tz (5.13)
W= 3 Ay W3 20 W g Ay
31 2 21(—14 2729 + 8121 22) 2 zl( 1+ 54z + 5421 29)
v =3 2 - e
3 2(21 1)Af 3 (21 1) Af
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These are not terribly enlightening in this form, but we can perform a coordinate change to
the A model using the inverse mirror map (treating the above functions as rank 4 tensors).
Let CZZ)" be the resulting A model fourpoint functions. We have, in particular,

lim CP) = 2 > e (5.14)

Here t1,to are the logarithmic solutions of the PF system. Therefore we have obtained the

instanton part of the prepotential for this space by the equation

dgj:inst. . 31

Example 6. We now present the result of applying the same procedure to O® O(—-2) —
P'. Since this is nearly the same as the above, we give only the briefest overview. We
mention, however, that the process of taking the projective completion adds more infor-
mation than in example 1. This is because in example 1, there was already a rigid curve
which could in principle be counted through other means. Here, we have additionally com-
pactified the deformation space of the curve, which amounts to a nontrivial addition of
Gromov-Witten information.
Recall that the defining vectors are

0 -21100
. (5.16)
-3 10011

Y = {uv + 1+ 20/ (ysy6) + 2125/ (Yayays) + ya + ys + ye = 0} (5.17)

The mirror geometry is

The discriminant locus of this hypersurface is
Aj =1+ 54z + 729235 — 291621 23. (5.18)
The PF operators are given by
D = (9% — 21(—291 + 92)(—291 + 6y — 1), (5.19)
D2 = (92 - 291)9% - 22(—392)(—392 - 1)(—392 - 2)

By using, once again, the PF system {Dj,0:D>}, we are able to find four point func-
tions. Translating these to the A model as in example 1, we arrive at

1
lim CP) = -3 > e (5.20)

n>1

We note that in this case, as above, the fiber curve has a triple intersection number (C3) =
2, so that we may define the prepotential, once again, by

dsﬂnst. . 31

Hence, we have arrived at the expected instanton expansion for each of the two most trivial

examples. We now turn to more general geometries.
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5.2 Kg cases

We now demonstrate more fully the power of this approach by using the Calabi-Yau fourfold
calculation to fully determine the prepotential on Kp,, Kp, and Kg4p, (up to polynomial
terms of degree 2). In a previous work [, the authors used a classical cohomology argument
to produce extended Picard-Fuchs differential operators on Kg. These operators were then
shown to reproduce the expected Yukawa couplings via the same techniques we used above
on local P!. The disadvantage of the extended PF system is that there is not a simple
closed form for the extended system on Kg. We will now show that through the fourfold
formalism, all Yukawa couplings are produced automatically. We believe that this method
should remain valid on every canonical bundle case.

Example 7. We begin with the canonical bundle over Fyy = P! x P'. The charge vectors

for X = KF, are
1 —21100
= ) 5.22
<F> (—20011) (5.22)

The canonical bundle over the projective closure P(Op, @ Kf,) = X has the toric description

0 -211000
0 —200110]. (5.23)
-2100001

Let Y be the mirror to K. Then Y is the family of hypersurfaces

{(u, v, 91,95, y6) € C* x (C*)® 1 uv + 1 + 22/ (ysye) + 2125/ (yayayg) + ya + Y5 + yo =(@}24)

As usual, there is a Picard-Fuchs system of differential operators whose solutions are the
period integrals of Y:

D, = 9% — 2’1(—291 — 205 + 93)(—291 — 209 + 035 — 1),
Dy = 9% — 2’2(—291 — 205 + 93)(—291 — 209 + 035 — 1),
D3 = 93(93 — 291 — 292) - 23(—293)(—293 - 1) (525)

We let ti1,to,t3 denote the logarithmic solutions. As derived in section 3, we consider
the extended Picard-Fuchs system {D;,Ds,03D3}. Recall that the period integrals of M,
the mirror of O(Hp) & O(—-2Hr) — P(O & O & Kp,), coincide with the solutions of
{Dl,D2,93D3}. Set

(k)

mnp _
Y(k) =0, k£ <3.

Yirr = [ QAVE VR VE Q mentp=h ke {4,5), (5.26)
M

Using the procedure detailed above, we can fully determine all 14 of the B model Yukawa
couplings Y(Z;np on M. As in the local P! case, we have to convert these couplings to the A
model (remembering that these functions transform as rank 4 tensors) and then take the
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(Zflf denote the A

limit t3 — —oo in order to recover the correct Yukawa couplings. Let C
model couplings on Ky. We find, in particular,

. 1
. lim C(?’f)l = ——( —2q1 — 4q190 — 2q% — 48q%q2 — 6q1q§ — 2qi1)’ — ... ),
3——00 2
1
. 211 _ L/ og2 2
Jim O = =5 (= da1g — 249100 — 120143 — .., (5.27)

where g; = e'i. These, and the other two so-computed couplings, have exactly the instanton
expansion expected, up to the scaling —1/2, which was derived in section 3. This means
that we should define a prepotential F for this space by the equations

OPBF ) il . .
o7 o7 = —2t3£r£100 Cay, t+i=3 (5.28)

Example 8. Next, we outline the construction for Kp,, the canonical bundle over the
second Hirzebruch surface. The charge vectors for X = Kp, are

A -21100
= ) 5.29
<12> <0 0-211) (5.29)
Charge vectors of P(Op, ® Kp,) = X:

0 -21 1000
0 00-2110]. (5.30)
—2 100001

The mirror Y to Kx is

{(u, v, 92,94, y5) € C2x (C*) ruv + 1+ yo + 2193 /ya + ya + ys + 2203 /ys + 23/y2 =(6)31)

The Picard-Fuchs system on Y is in this case:

Dl = 91(91 — 92) — 21(93 — 291)(93 — 291 — 1),
DQ = (9% — 2’2(91 — 292)(91 — 292 — 1),
Dg = 93(93 - 2(91) - 23(—293)(—293 — 1). (5.32)

Take t1,t9,t3 to be the mirror map. We work with the extended Picard-Fuchs systems
{D;,Ds,05D3}, whose solutions are the same as the period integrals of the mirror of
O(Hp)®O(—2HF) — P(O® O® Kf,). We again compute the B model Yukawa couplings

Y of M, and let C* be A model couplings of K. Then
(4) (4) X

1
: 301 __ 2 2 3 4
tSLHPOO Cly = —5( —2q1 — 2q7 — 2q1q2 — 32q7q2 — 247 — 241 — . ..),
1
. 211 2 3 2 2
Jim Cry = —5 (= 20192 — 1679 — 549102 — 2073 — - ),
1
Ii 121:__ —9 _ 2 _222_1 3 —
Jm O 2( 01q2 — 841 g2 — 24705 — 18q7¢2 ),
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, 1
lim O = —5 (= 20102 — 49702 — 64702 — 20743 — ... (5.33)

We note, in particular, that the instanton number Ny ; which was was computed to be 1/2
in [ via localization, has a value of 0 in our calculation. This is in accordance with the
localization computation performed in section 3.

Then the prepotential F;,4. is found by

3 L.
0 Finst. — _92 lim Cz]l

inst it j=3. 5.34
ot ot} tz——oo (4 J ( )

Example 9. Next, we briefly present the same computational procedure carried out on
K4p,. Recall that this is defined by the vectors

~11-1100
~1-11 001]; (5.35)
10 1 -110

Kgp, is the canonical bundle over the blowup of P? at two points.

Then we can immediately write the corresponding vectors for the 4fold over Kyp,,

namely KP(OdPQ ®Kap,)"

0 -11-11000
0 -1-11 0010
0 -1 0 1 -1100
-2 1 0 0 0001

(5.36)

Let Y be the mirror to this fourfold. Y is given by

Y = {uv+ 1+ 2194y5/y3 + y3 + ya + ys + 22Y3ya/ys + 23/ (y3ys) + z4/ya = 0} (5.37)

The Picard-Fuchs system for period integrals on Y consists of six order two operators

= (01 — 02)(6h — 03) — 21(—01 — 02 — O3+ 04)(—01 + 02 + 03),

= (03 — 61 + 03)03 — z9(—61 — 02 — O3 + 04)(—02 + 07),

= (03 — 61 + 02)03 — z3(—61 — 01 — O3 + 04)(—05 + 01),

= (01 — 03)02 — 2120(—01 — 01 — 03+ 04) (=01 — 61 — O3+ 04 — 1),
= (01 —63)03 — z123(—01 — 61 — O3+ 04)(—01 — 01 — O3+ 04 — 1),
DG = (04— 01 — 03 — 03)04 — z4(—204)(—204 — 1).

Let t1,...,t4 be the logarithmic solutions. We define the fourpoint functions Y(anp 7 in

exact analogy with the earlier cases. We then solve for these fourpoint functions using the
relations from the extended Picard-Fuchs system

{D1,...,Ds,0,D¢}. (5.38)
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mnpq
(4)
limit, what we find is perfect agreement on all Yukawa couplings for the del Pezzo. We

After transforming to the A model (into functions C ) and taking the large fiber

write here the first two such couplings:

, 1
lim CF = =5 (a1 +af — 20102 — 20145 + 3010203 — 24763 — 24765 — 32¢7 203 + - )

tg——0o0

. 1
Jim Ccy = —5( — 2192 + 3919243 — 1647 q2q3 — 24765 + - - ) (5.39)
These are as expected, up to the overall —1/2, which we predicted in section f|. This means

that we recover the right instanton expansion via the normalization

D3 Finst. . ikl ., .
————=-2 lim C ,i+j+k=3 (5.40)
ot oty otk ta——o0 ~ ()

6. Fourfold constructions for threefolds with b, = 0

From the above, we have seen that while we can recover much additional information by
using the projective closure plus canonical bundle technique, this seems to be unsuitable
of there are too many noncompact divisors in the uncompactified geometry. The reason
for this is as follows. If we attempt a straightforward projective closure procedure on a
space with three or more noncompact divisors, the Poincare polynomial is badly behaved,
and we are thus unable to use the technology introduced above in the computation of
fourpoint functions. In particular, any local Calabi-Yau satisfying dim Hy(X,Z) > 1,
dim H4(X,Z) = 0 has at least three noncompact divisors, so we need new methods of
analysis for such spaces.

With these difficulties in mind, we will develop tools tailor made to address this prob-
lem. In fact, we are able to show that for a large class of examples, by performing a partial
compactification followed by a flop, we can reduce the problem to a Kg type case. Then we
have only to refer back to the methods introduced in the preceding sections on Kg, flop the
resulting Yukawas back and take the appropriate limits to recover the Yukawa couplings
on the geometry of interest. We will work through several examples to get a feel for the

computational techniques.

6.1 The two one parameter cases

Example 10. We begin with the conifold, X; = O(—1) @ O(-1) — P!. While the
Yukawa coupling for the conifold has been derived above through simpler means, we present
this example as a template for the types of methods we will use in the sequel.

First, we reemphasize that the basic reason that local mirror symmetry (that is, local
mirror symmetry via Picard-Fuchs systems) breaks down for the conifold is that there is
no 4 cycle on this space. Hence, the PF system on the mirror cannot have a double log
solution, and therefore we cannot recover an instanton expansion.

With this as motivation, we will consider a simple noncompact threefold which contains
the conifold geometry, as well as a new four cycle. The candidate ‘compactification’, which

,29,



Figure 3: Toric diagram for the addition of a 4 cycle to O(—1) ® O(-1) — PL.

we call X, is depicted in figure B, and is defined by the toric charge vectors

I 1 1-1-10
(F) B (—3 01 1 1)' (6.1)

Now, we want to connect this to our previous constructions, i.e. the canonical bundle over
a surface case. But this is easy, because X; admits a flop to Kp,:

—! —-1-1110
= . .2
<l1+12> <—2 100 1) (6:2)

That is, X{ lor o~ ¢ .- Now we use the machinery of previous sections. Let K Kp, be the
noncompact fourfold associated to K, defined by charge vectors

0 -1-11100
0 -2 10010]. (6.3)
—21 00001

We denote the mirror of K Kr, by Y. This procedure is summarized by the following
sequence of operations:

X, — X, — X{"" ~ Kp, — Kk,

Then exactly as in the K5, case, we can compute B model fourpoint functions Y(T)"p (21, 29,
z3) on Y by using the Picard-Fuchs system. Here 21, 29, 23 are the local variables on the
complex structure moduli space of Y.

The next step is to carry the B model fourpoint functions across the flop on the B
model, defined by the change of variables

1
21 =Wy, 22 = WijWz, 23 = Ws. (6.4)

We let Y be the manifold we get by using the flop transformation on Y. Here, we have to
remember that the Y(Z;np (21, 22, z3) transform as rank 4 tensors. Then, we have fourpoint
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functions ?(Z;np (w1, wq,ws) on f/, which is also the mirror of the fourfold over Xl. Let

t1,t9,t3 be the logarithmic solutions of the Picard-Fuchs system on Y.
Next, use the inverse mirror map w(t) to convert the ?(Z;np (w1, wq,ws) into A model

fourpoint functions (:"(TZ)" P on the fourfold over X, again taking the tensor property into
account. And then finally, we can recover the expected Yukawa threepoint function Cly,
on X7 in the limit as ¢y, t3 — —o0.

Since this whole procedure has been rather complicated, we summarize the various
steps in the following diagram.

Vi Vi — O —

Y v Kiy —— X,

The functions along the top line are the fourpoint functions of the corresponding spaces
on the bottom line. On the bottom line, the first arrow is given by the flop, the second by
the mirror map, and the third by taking the double limit to,t3 — —oo. These two limits
are to be understood as first taking the size of the P? < X, to infinity, and then taking
the limit of the large compactification fiber (that is, the limit in which the noncompact
fourfold becomes a noncompact threefold). The result of this is

et

1
_§m. (6-5)

Here, an extra factor —% appear because we have used a P! compactification.

Example 11. For our next example, we revisit Xo = O @ O(—2) — P!. Once again,
though we have already worked out the Yukawa coupling for this case through the fourfold,
we now want to take a look at another way of deriving this fourpoint function. The reason
is that this new viewpoint is the one that will prove to be naturally applicable to the
general case.

As in the previous example, we want to add a four cycle at some convenient location
in the geometry in order to recover the instanton expansion. In contrast with the previ-
ous example, we also have to simultaneously compactify the one parameter noncompact
deformation space of this P!. The only choice that satisfies both of these criteria is Kp,:

-21100 (6.6)
-20011 /) '
This is depicted in figure fl.

Now, we have already done the fourfold calculation on KF,, so we only have to refer
to the Yukawa couplings above, eqn. (5.27). Let C((Z’)O Y be that taken from eqn. (5.27), and
let t1,t2 be the sizes of the two P's in Fy. Then we find, in the relevant limit,

. 1
lim  C® :—5(—2q1—2q%—2q§—...) (6.7)

tat3——oc0 (1)
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So, even after taking into account the extra factor —1/2 from the fourfold compactification,
we still see that the instanton expansion is twice what we expect it should be. The reason
for this is, however, easy to see. In the Kp, geometry, if we perform a direct localization
calculation, then we find that there are two curves in each of the two homology classes,
which is obvious from the toric diagram. Thus, in order to recover the correct expansion,
we have to remove by hand the excess state. After doing this we indeed get what we were
expecting, complete with the overall negative sign [J].

6.2 Higher parameter examples

We now present our computational scheme in its general form. The basic idea is to complete
all curves with normal bundle O & O(—2) by using the Fy-type compactification given in
Example [[I. This kind of example was first considered in [I0]. After doing this, we find
that we can recover all Yukawa couplings using the same trick as above, i.e. by flopping to a
canonical bundle case and then taking the noncompact fourfold over the canonical bundle.
This method works well for a reasonably broad class of geometries. We will carefully go
through the details of two more examples.

Example 12. We take X to be a local threefold with dim Hy(X,Z) = 2,dim H4(X,Z) =0

defined by the charge vectors
5 -2 1100
= . 6.8
(F) (1 —101—1) ©8)

There are two curves C;,C, corresponding to the vectors {1, [? respectively. From the vectors
we can read off that N, /x = O @ O(=2),Ng,/x = O(—1) ® O(—1). There is one more
curve Cs1¢ which also has a normal bundle of O(—1) ® O(—1).

Then, from the examples of the previous section it is clear that we only need to
compactify the Cy curve in order to derive a complete set of Yukawa couplings using the
fourfold construction. Let the space we get by compactifying the Cy family be denoted by
X. Then X is given by the charge vectors

10 -2 000 11
tf=]1-211000]. (6.9)
12 1 =101-10

In order to convert this to a canonical bundle case, we can flop to Kgp,:

1942 -1-101 01
N+ =l-1011 -10]. (6.10)
—2 -110=110

This is depicted in figure [f. Now that we have a canonical bundle case, we can proceed
as usual with the fourfold calculation. Let t3 be the Kéahler parameter corresponding to
P(Ogp, ® Kqp,). Since we have already worked out all the fourpoint functions for the del
Pezzo, we can just use these and flop them back to find the appropriate Yukawa couplings
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Figure 4: Geometric transformations of X.

for the present case. After doing this, we find the threepoint Yukawa couplings on the
original geometry in the large fiber limit:

lim €30 = —1< Lt ) (6.11)
to,tz——c0 () 2 1—eft 1 —elitt2)’

lim C?Y = L R (6.12)
to,tg3——00 4) 21 — etrtta’

lim C/2l = L (6.13)
tosts——oo  (4) 21 — el1tt2’

1 6t2 et1+t2

tO,tIlsiEI*OO C?j)l ) <1 * 1—et2 * 1 —etittz ) (6.14)

We again see the same phenomena from the earlier examples. First, the overall —1/2 comes
from P! compactification associated to Kyp,. Secondly, we have to remove by hand the
overcounted state which is represented by

et

9= (6.15)

1—elt’

After this, we find complete agreement with the expected instanton information on this
space [[[J]. In other words, we may define a prepotential for this example by

& Finst. _ 9 lim !

. itj=3 6.16
ot 0t} o Clays 1] (6.16)

up to the overcounted (—2,0) curve.

Example 13. Finally, we want to consider a rather complicated example, which will help
to illustrate the general procedure. The space we have in mind was considered in [[[J], and
is specified by charge vectors

A 100 1 —1 -1
2l=]010-11 -1]. (6.17)
3 001 —-1-11
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Figure 5: The trivalent curve problem.

Figure 6: Geometric manipulations of the trivalent curve.

We denote this by X. Note that dim Hy(X) = 3,dim Hy(z) = 0, and the three curves
in X have a single point of intersection. The toric graph of this space, complete with
triangulation, is shown in figure f.

Now, from the previous examples of this type, the general idea we have followed is to
‘compactify’ the curves with normal bundle O @ O(—2) via the scheme we originally used
for the one parameter space @ @ O(—2) — P'. In our present situation, such curves are
not evident, but we can make them manifest by performing a flop transition. We call the
resulting space X ., and its charge vectors are

—! -100-11 1
P+i'=11100 0 —2|. (6.18)
B4+t 1010 —20

Then, we see that the second and third curves have normal bundle O & O(—2).
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In order to keep the calculation from getting too unwieldy, we will only compactify
one of the (—2,0) curves, and proceed with the calculation on the resulting space. Upon

doing this, we get a new space X flop Specified by charge vectors

kO 0001 —-201
Kl -100-11 10

— . 6.19
k2 1100 0 —20 (6.19)
k3 1010 =200

From the charge vectors alone, it is a bit hard to see what is going on, so we have given a
diagrammatic representation of this procedure in figure .

Before diving into the details, let us briefly consider what exactly it is that we are
expecting to learn through the study of this space X flop- The only real difference between
X and X flop 1s that on the latter, a single (—2,0) curve family has been compactified. If we
look back at the original geometry X, this corresponds to ‘filling in’ the curve information
corresponding to the I' 412 curve on X. Therefore, the predicted result is that the instanton
expansion we find will enumerate curve data corresponding to the curves 1%, 12,13, ' 412413,
and ! + [3. That is, we will obtain all information corresponding to curves with normal
bundle O(—1)@O(—1), plus the curve I +12 (which has normal bundle O@O(—-2)) that we
have completed by using our compactification. Finally, this last curve should be counted
with an overall —2 in the instanton sum, as a result of the type of compactification we are
using.

With that being said, let’s proceed with the computation. The first thing we have to do
is associate a noncompact fourfold to the above geometry X flop- In the previous examples,
we have done this by first reducing to a canonical bundle case and then compactifying the
canonical bundle. While this can indeed be done here, we claim in the present case that it
suffices to compactify the variable corresponding to the compact divisor in the geometry.
From Figure [, it is clear that there is exactly one compact divisor, namely P! x P!, and
moreover this corresponds to the fifth column of the matrix of charge vectors defining X Flop-

One can see this by recalling the charge vectors for Kpip1:
—-21100
(6.20)
-20011
Here, the divisor corresponding to the first column represents the P! x P!, and we note

that the fifth column of the charge vectors for X flop also contains two —2 entries.
Then, it is straightforward to write down the charge matrix of the fourfold over X Flop*

mY 0 0001 —2010
mt 0 -100-11 100
m?[=10 1100 0 —-200]. (6.21)
m? 0 1010 —-2000
m* 20000 1 001

We denote the above space by X. Let us consider a bit further why it is that we expect
this fourfold to reproduce the instanton information we are looking for. Previously, most
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of our successful calculations have been done on a canonical bundle example. Notice first
of all that we can perform two flops on X, to reach a canonical bundle case:

-1000 —-111
1 100 0 -20
0 -101 -1 10
0 11-20 00

(6.22)

This is done by first flopping the second vector of X flop» and then flopping the fourth vector
of the resulting space. On this matrix, it is clear that the fifth column corresponds to the
single compact divisor, and furthermore all entries of the fifth column are less than or equal
to 0, so that this is a Kg case. This can also be seen by constructing the vertices for this
manifold. Now, since the compactification variable is fixed across the flop, it should be
sufficient to just work directly on the space X above. And indeed, this will turn out to be

the case.
Let ¥ be the mirror manifold to X. We omit the details, but merely note that there
are 10 order two Picard-Fuchs operators {Dj,...Dip} whose solution space describes the

period integrals of Y. Let ¢, ..., ¢4 be the logarithmic solutions of this system. As in all
previous cases, we use the extended set of differential operators {Dy,...605Djo} in order to

solve for the fourpoint functions of Y. Let 57(1”)"’) 9" be the fourpoint functions so obtained.
Then we first use the inverse of the mirror map tg,...,ts to transform these fourpoint

functions on Y into fourpoint functions C'(TZ)" PI" on X. Next, we recover the threepoint
functions C;flpg ‘; on X s, in the double scaling limit:

O™ —  lim CA&;“W. (6.23)

flop ™ 40 4 oo
And lastly, we can compute the threepoint functions we are looking for, C™? on X, by
reversing the flop transition on C’?ﬁg) (this function transforms as a rank 3 tensor). After
all is said and done, we arrive at the threepoint functions for X. For brevity, we list only
a representative subset of the results here:

300 1 et et1tts etittatts
¢ B _§<1 — et1 o 21 — etit+is + 1— et1+t2+t3>7 (624)
1 et2 elitta+ts
030 _ 1
“ = 2 <1 — etz * 1-— 6t1+t2+t3>’ (6.25)
1 elitis et1tta+ts
201 _ 1
o= 2 < 1 — et1tts + 1 — etitta+tts )’ (6.26)
1 et1+t2+t3
o = (6.27)

91 — ehittatts”

From these functions, we can see many of the previously advertised features of the com-
pactification scheme we have chosen. As expected, the ¢1 +t3 curve appears with an overall
—2 factor, from the P! x P! type compactification. Besides this, the expansion is missing
both of the other double curve classes t1 + to and t9 + t3. In other words, for example, we
would expect to find the term

et2+t3

S R (6.28)
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Figure 7: Taking the other limit on Xflop-

in the expansion for C%?!, since the t3 + t3 curve has normal bundle O @& O(—2). This can
be seen from the topological vertex calculation [f].

Nonetheless, since the original space X is pairwise symmetric under the exchange of
any two of the curves with normal bundle O(—1) & O(—1), it is clear that we could have
compactified either of the other two (—2,0) curves and picked up the missing terms ala
eqn.(6.2§). Therefore, up to the overall fraction 1/6, we have arrived at the expected
instanton expansion.

The extra factor —1/2 appears in the same way as in all previous examples.

Finally, to close this example, note that there is in fact more we can do with the
space X flop- That is, instead of taking the limit {p — —oo, we can also consider the limit
t3 — —oo. The result of this is shown in figure [ This is a different Calabi-Yau, which we
denote by X, and we can use the same results above in this new limit in order to compute
the threepoint functions on X. Without going into any detail, we merely list two of the
threepoint functions obtained this way:

003 1 et2 elitte etotti+ta
Cy 2_5(_21_6152 +1_et1+t2 +1_eto+t1+t2>’ (6.29)
1 etot+t etottitte
300 _ 1
Oy = 2 (1 — elott1 + 1— eto+t1+t2)' (6.30)
In other words, the curve information corresponding to the term
to
e
1— eto (6.31)

is missing. This is expected, because we did not compactify this curve family.
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6.3 A word about sign conventions

In the two preceding examples, the type of compactification we used was chosen according
to topological vertex calculations [fJ]. In the following, we present an argument that in
some sense, the sign choice coming from the vertex computation is artificial (that is, it is
extrinsic to the geometry).

Consider again Example [[J. The compactification used there, which was originally
suggested in [[[0], was made so that we would find the following result for the instanton
part of the prepotential:

. _nty n(t1+t2) nto
Finst _ Z € +e 3 te (632)
n
n>0

Recall that t; was the complexified Kahler parameter for the curve with normal bundle
O @ O(—-2), and the Kéahler parameters t; + t2 and ta both correspond to curves with
normal bundle O(—1) ® O(—1). In other words, we have associated a minus sign to (0, —2)
curves, and a plus sign for (—1, —1) curves.

However, we claim that from the geometry of Example [ alone, this sign choice is not
unique. For example, were we to use instead the instanton part

Fy =Y

n>0

entl + en(tl-i-tz) + Bnt2

: (6.33)

n3

the answer would be equally ‘acceptable’, in the following sense. We recall from [B],[fl] the
conjecture that the B model Yukawa couplings should be simple rational functions, such
that the denominator consists of the components of the discriminant locus. Then, if we
use either F™s or (}"i"St), (together with the triple intersection numbers conjectured in
[), we find rational B model Yukawa couplings of exactly the same level of complexity.
Moreover, the resulting extended Picard-Fuchs system [fl] is also of roughly the same form.

We will add further evidence to this claim in the appendix, where we construct the
extended Picard-Fuchs system for the mirror of the trivalent curve for both choices of sign
convention. Indeed, it turns out that in both cases, we find a system of nearly identical
complexity.

7. Conclusion

The main features of this paper are summarized as follows.

First, in [}, we made use of the instanton expansion for Kg cases in order to compute
the allowed values for the classical triple intersection numbers; in the present work, through
the use of the canonical bundle formula, we have carried out the computation of these
numbers in a way that is more intrinsic to the geometry.

Secondly, we have seen, besides the construction of the prepotential, the resolution of
another problem encountered in [[l]. In [fl], in order to construct the extended Picard-Fuchs
system for X such that by(X) = 0, we took for granted the known instanton expansion
from the topological vertex. Above, we have overcome this through the use of a special
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compactification scheme [I(J] which is known to agree with the vertex result; the advantage
of this is that, in principle, it applies to any X with b4(X) = 0.

We briefly mention some directions for future study. We are currently working to
extend our results to non-nef toric varieties and their canonical bundles, e.g. K, for
n > 3 and P(O ® O(k) ® O(—-2 — k)) for k > 1. In both cases, we will need to take
advantage of the machinery of generalized mirror symmetry (ala Jinzenji, Iritani, Coates-
Givental) in order to complete the calculation. We hope to report on these matters in
future work.
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A. Extended Picard-Fuchs system of trivalent toric graph

Since this model is symmetric under the permutation of the three Kahler parameters, we
present a minimal set of formulas for brevity. First, we start from the A-model Yukawa
couplings obtained from the body of this paper with the constant term predicted in [fl]:

1 1 2 1 3 1 2 3
v et et +t et +t N et +te+t
111 — 1— etl 1— etl+t2 1— 6t1+t3 1— etl+t2+t37
et +t? et HPHt?
Y112 = - 1 _ 6t1+t2 + 1 _ et1+t2+t3 )
1 etl +t2+t3
Y123 ==+ — 53 (Al)

2 1 _ etl+t2+t3 *

We can also read off the mirror maps from the ordinary Picard-Fuchs system of trivalent
toric graph as follows:

f1 = log(z1) + log (%(1 4 m)> log (%(1 4 m)> _
~log <%(1 + m)> . (A.2)

Then, we can obtain 3-fold version of the A-model Gauss-Manin system for this toric-graph,
as was defined in [[[]. After transforming this Gauss-Manin system into the B-model by

the above mirror maps, we can obtain the extended Picard-Fuchs system {D;, Dy, D3} as
relations of the B-model Gauss-Manin system. Here, we present D; as follows. Dy, D3 are
obtained from the cyclic permutation of the subscripts 1, 2, 3 of Dy:

Dy = (—52’%2’% + 22322 4 52120 — 1023 2320 4+ 42325 23 + 2222%2’1 + Qz%zg + 21 +
82?23272 + 6z%zzz§ + 62%2;23 — 6212923 — Sz%z%zg -1+ 22%273271 - Sz%zg - 42%273 +
4232922 + 52123 — 429 20)07 + ((—4z123 + 22120 + 22323 — 42325 — dzp2azy —

4222321 — 22229 — 12,2%222732) — 4222225 + 16z%z§z§ + 42322 + 10,2%2732) — 62222 —
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2 2 2 2,2
82%2223 + 8z§’z223 + 8212223)02 + 2123 + 4z§’z223 — 2272523 + 2129 +
(—4z129 + 22123 — 22323 + 4zfz§ — 4z2z§z1 — 4252321 + 22320 — 42%2223 — 12232523 +
16z%z§z§ - 4z:fz% - 6z%z§ + 10,2%2% + 8,2%,22232, - Szi’zgzg + 8z12923)03 — 22225271 -

223 — 2232321 — 32322 — 2ize — 2202320 + 2212023 + 22523 + 22025 — 32222 4 8202225 +

4232922 — 222 2022)01 + (423 2022 — 4232223 — 2212023 — 2120 + 222 2022 — 8232222 +
2222223 + 2202521 + 2232321 — 2223 — 22328 — 32222 4 32522 + 2P a0 + 22322 +

2123)03 + (8222222 4 22p232) + 6222025 + 4232223 + 22522 — 2212923 + 423 2922 +
2,2%23 - Sz%zg + 22%23272 - 22%2323 + 2z§’z§ + 22%273271 — 8219’273272 - z%z%)

(—42'%2’22'32, + 42%2’%23 — 2212923 + 2222%21 + 22’%222'32, — Sz%zgzg + 22’%2’%2’3 + 32’%2'32, +
2222321 + 2hz23 + 22325 — Qz%zg + (4z2z§zl — 4222 — 2212 + 4z%22z§ — 4z§’z§ — 42223 —
162%232% — 42322 4 4222321 + 1625 2320 + 62’%2'32, + 62223 — 22123 + 4232329 — 82%222% —

2 2 2 2.2 2
8232223 + 4232223 — Azizpz3 + 221 )03 — 32522 — 2220 4 2120 — 2123)02 +

(—52i25 + 225232 + 22%2’% + 22229 — 82%2’%23 + 2222329 + 22325 — 2212923 —
8232320 — 2322 4 22p22 2 + 6222223 4+ 4232223 + 423 2022 — 223 2922)03. (A.3)

This operator is rational but really complicated. Of course, this system is one example of
the extended Picard-Fuchs system for this space, and there may well be a more concise
extended Picard-Fuchs system. We note that, as mentioned previously, we arrive at an
operator of nearly the same complexity by instead considering a system in which the
overall scaling of all the -2 curves are taken to be +1 instead of -1. This is therefore some
indication that the -1 factor coming from the topological vertex calculation is not intrinsic
to the geometry.

Finally, we present the B-model Yukawa couplings obtained from the above extended
Picard-Fuchs system. These Yukawa couplings are indeed transformed into the A-model
Yukawa couplings ([A.]]) by the mirror transformation ([A.3).

B-model Yukawa coupling of trivalent toric graph.
Vi1 = z1(dzoz3—1)% (1625 23 23— 425 2 — 9625 25 23 + 2023 2321 + 3223 23 23— 25 — 822 25 +

16233:222% +QOZQZ§Z1 +32z%zgz§ —32212923 —22923+42120+229—1 —4z§’zl +

2.2 2
22’3—82123 —Z3 +42123)T(217 22, 23)7

Yio0 = (42223—1)(—1+421z3)2(4z22§z1—z§—122’%2’32’2+162%2323—4z523z1 + 2123

—2923+23 —42%2% +32z129—221 —{—sz)zzT(zl, 29, 23),

1
Yio3 = 5 (42120 —1) (4223 — 1) (-1 +421 23) (322523 23 — 1623 2025 — 1625 23 21 +

2232,271 —i—2z§zg — 162%;2%23—|—2Z%Z3—|—12212223—22123—|—2ZSZ3 —22923—23+ 1+

2 2
22iz9—29—22120 — 21 +22521)T (21, 22, 23),
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T(Zl, 29, 23) = 1/((42122 — 1)2(42223 — 1)2(42321 — 1)2(4212223 —Z1 —23+1—22)). (A4)
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